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Abstract

In this thesis we compare Suslin–Voevodsky’s sheaves of proper effective relative
cycles with presheaves representable by certain monoid objects. We give two
results in this direction; the first describes a higher dimensional analogue of
Suslin–Voevodsky’s comparison between relative zero cycles and the graded
monoid of symmetric powers ([SV96, Thm. 6.8]) and the second is a new proof
of a direct generalization of loc.cit.

The key component of our efforts is a theorem, proved on the way, telling us
that after restricting ourselves to seminormal schemes the morphism from the
presheaf represented by a commutative-monoid object (satisfying reasonable
assumptions) to its sheafification in the h-topology, becomes an isomorphism
after appropriate extension of scalars. Furthermore we also introduce a con-
struction, developed in collaboration with Jarle Stavnes, which allows for a
uniform (and sometimes simplified) study of the theory of semi and (absolute)
weak normality. We then apply this construction to obtain several interesting
results concerning the twin theories of weak and semi-normality in a parallel
manner. Moreover our construction together with its consequences allow us
to describe representable sheaves in a large family of h-topologies, without
having to do a case by case study. In particular this reproves a special case
of Rydh’s description of representable sheaves in the h-topology, as well as
extends Huber–Kelly’s analogous result for the decomposable h-topologies.

This thesis was written with the additional purpose of providing a self
contained presentation of the theory of relative cycles and the construction of
the Chow scheme. To achieve this we recall many of the definitions and results
from [SV00] and occasionally expand on the explanations found there.
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Introduction

Historical background

Spaces parametrizing positive algebraic cycles have been in use in algebraic
geometry for a long while. For instance Severi, who initially introduced the
notion of rational equivalence of cycles, discovered that positive zero cycles on
a surface correspond to points on the symmetric powers of this surface. Severi
then used this parametrization to describe rational equivalence of cycles by
means of rational curves on the symmetric powers.

Later Chow proved the existence of a variety, today called the Chow variety,
which parametrizes cycles of dimension r and degree d on a given variety. Just
as in the case of zero cycles, rational curves on the Chow variety describe
rational equivalence of cycles (see [Sam56, Thm. 3]).

Many years after their introduction, Chow varieties were used to define
Lawson homology (see [Law89], [Fri91]) and were also applied in the study of
rationally connected varieties (see [Kol96, Ch. IV, Sec. 3]).

Moreover as part of a quest to construct a reasonable singular homology
theory on the category of schemes of finite type over an arbitrary field k, Suslin–
Voevodsky introduced the concept of relative zero cycles in [SV96]. Although
speaking of a cycle on a variety parametrized by the points on another variety
is nothing new (see for instance [58]), the fact that one can define a presheaf
of such cycles (with the correct extra constraints) on the category of normal
varieties was certainly novel. Furthermore they proved that the presheaf of
effective relative cycles onX is isomorphic to the presheaf represented by infinite
symmetric powers of X (after localization by the characteristic of the ground
field, when it is positive). This gives an interpretation of the symmetric powers
parametrizing positive zero cycles which is more in line with Grothendieck’s
idea that parameter spaces in algebraic geometry should ideally be solutions to
moduli problems.

Suslin–Voevodsky later extended their theory of relative cycles to higher
dimensional cycles and also to all Noetherian schemes in [SV00]. Their paper
also gives a modern treatment of the Chow scheme as a scheme representing
relative effective cycles in the h-topology, a rather fine topology previously
introduced by Voevodsky. The theory of sheaves of relative cycles is one of the
main technical tools which Voevodsky used to construct a triangulated theory
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of motives over a field thus opening a vibrant area of research. For more on
the story of mixed motives see [VSF00].

Central concepts

Relative cycles, the h-topology and seminormality are arguably the three most
central notions of this thesis. Let us now give a flavour of each of these concepts.

Relative cycles

For a scheme X → S of finite type over a Noetherian scheme S a relative cycle
is informally speaking a cycle (i.e. a formal sum of points) on X which lies
over generic points of S and has a well defined specialization to any fiber of
X → S. These cycles are especially of interest because they allow for well
defined base change to any Noetherian scheme S′ over S. This fact is due to
deep connections between the theory of properness and flatness which is then
combined with Galois theory. We will explain this in more detail in the course
of this thesis.

The h-topology

The h-topology is a Grothendieck topology on the category of schemes which
is finer than most of the topologies appearing in algebraic geometry. As one
might expect this property has its pros and cons. A good property is that if one
has a sheaf in the h-topology then we have very many ways of gluing sections
together which can make the search for a section with certain properties easier.
On the other hand it is a rather strong condition to be an h-sheaf and there
are several functors represented by rather reasonable schemes which fail to be
sheaves in the h-topology.

Seminormality

The existence of a variety giving the “best approximation to the normalization"
of a given complex variety under the constraint of keeping the same topological
space was first proven by Andreotti-Norguet in [AN67]. They called this con-
struction weak normalization. Later Andreotti-Bombieri developed the weak
normalization in the context of schemes in [AB69] where they proved that for
a dominant morphism f : Y → X there exists a universal homeomorphism
σ : ∗X → X initial among universal homeomorphisms with target X that f
factors through. This map σ is the weak normalization of X in Y . Similarly
Traverso proved in [Tra70] that one also has a factorization Y → +X

σ′→ X
where the last morphism σ′ is a universal homeomorphism such that the induced
maps of residue fields are isomorphisms and σ′ is initial among such morphisms
that f factors through. In this case σ′ is said to be the seminormalization of
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X in Y . We let Xsn → X (resp. Xwn → X) denote the seminormalization
(resp. weak normalization) of X in its integral closure and call this the semi-
normalization (resp. weak normalization) of X. We say that X is seminormal
(resp. weakly normal) if X is isomorphic to its seminormalization (resp. weak
normalization). In characteristic zero these twin notions coincide, but not in
general. Furthermore seminormalization is a functorial operation, while weak
normalization is not (a counter example can be found in the proof of [Kol96,
Ch. 1, Prop.7.2.3]).

In [Ryd10] the notion of absolute weak normality is introduced where the
absolute weak normalization of a scheme X is a universal homeomorphism
σ : Xawn → X such that if σ′ : Y → X is any other universal homeomorphism
then σ factors through σ′. The absolute weak normalization is functorial.

Main results

The central purpose of this thesis is to prove Theorem 6.5.3 and Theorem 7.2.1.
We now state the first of these two main theorems:

Theorem (6.5.3). Let S be a Noetherian scheme and i : X → PnS a closed
embedding. Then there exists a monoid object in the category of schemes
over S, denoted by Cr((X, i)/S), such that if PropCycleff (X/S, r)Q+ denotes
Suslin-Voevodsky’s presheaf of proper effective relative cycles with coefficients
in Q+

1 then after restricting this presheaf and hCr((X,i)/S) to the category of
semi-normal Noetherian schemes over S we have an isomorphism of presheaves
of monoids:

PropCycleff (X/S, r)Q+ → hCr((X,i)/S) ⊗N Q+.

For a morphism of schemes X → S and positive integer d we denote the
d’th symmetric power (when it exists) by Symd(X/S). The following theorem
is our second main result of this thesis.

Theorem (7.2.1). Let X → S be a flat finite type morphism to a Noetherian
scheme S such that X/S is AF (Definition 1.5.26) and let Sym•(X/S) de-
note the commutative monoid

∐
d≥0 Symd(X/S). Then after restricting the

presheaves of monoids hSym•(X/S) and PropCycleff (X/S, 0)Q+ to the category
of Noetherian semi-normal schemes over S we get an isomorphism of presheaves
of monoids:

PropCycleff (X/S, 0)Q+ → hSym•(X/S) ⊗N Q+. (0.0.1)

We emphasize that combining [Ryd08b, Thm.3.1.11], [Ryd08b, Cor.4.2.5]
and [Ryd08a, Thm. 10.17] one obtains another proof of Theorem 7.2.1. Fur-
thermore this theorem is a generalization of Theorem 6.8 of [SV96], which is to

1This is the sub-monoid of Q consisting of the non-negative rational numbers.
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the best of our knowledge the first modern (functorial) comparison between
effective zero cycles and symmetric powers. The set-up of loc.cit. is as follows:
The scheme S is any field k and the presheaves involved are restricted to the
category of normal varieties over k. The statement of their Theorem is also a
little more specific in the sense that they describe the isomorphism by means
of ”symmetrization”, a construction that involves providing a section to the
projection from symmetric powers of a scheme finite and surjective over a
normal scheme. The use of this symmetrization construction is taken further
in Chapter 3 of [Har16], not only by considering symmetrization in the relative
set-up, but by also showing that it is compatible with a lot of additional struc-
ture on both sides which is not considered in [SV96]. Proposition 7.2.4 tells us
that our isomorphism from Theorem 7.2.1 coincides with symmetrization after
restricting ourselves to normal Noetherian schemes.

Strategy

Our two main theorems are proved in a similar manner: first we sheafify our
presheaves in a fine topology such as the h-topology. This gives a lot of freedom
to glue sections together which makes it possible to construct homomorphisms
between our sheaves which in fact turn out to be isomorphisms. The final step
then involves understanding how our presheaves compare to their sheafifications.
This turns out to be described by means of purely inseparable field extensions
which is why we want the seminormality assumption as one has more control
over field arithmetic in that setting.

The Chow monoid

For a closed embedding i : X → PnS the presheaf of relative cycles of degree d
and dimension r is representable by a scheme Cr,d((X, i)/S) in the h-topology.
The infinite coproduct of these schemes (as d varies) can be endowed with
the structure of a commutative monoid object in the category of schemes
which we denote by Cr((X, i)/S) and call the Chow monoid of r cycles with
respect to i. This monoid scheme h-represents the presheaf of relative r cycles
(Theorem 6.4.2).

Representable sheaves in the h-topologies

The following theorem gives a neat description of the sheafification of a repre-
sentable functor in the h-topology.

Theorem (Rydh). Let X be an algebraic space locally of finite presentation
over a scheme S and let T be a quasi-compact and quasi-separated scheme
over S. Then if Lh(X/S) denotes the sheafification of hX/S with respect to the
h-topology we have
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Lh(X/S)(T ) = HomS(T awn, X) = colimλ HomS(Tλ, X),

where T awn denotes the absolute weak normalization of T and the colimit is
taken over all finitely presented universal homeomorphisms Tλ → T .

If one instead works with one of the coarser cousins of the h-topology where
one has more control over field arithmetic, for instance the cdh-topology intro-
duced in [SV00], one can then understand the sheafification of a representable
presheaf in terms of the seminormalization even in mixed characteristic as long
as the base scheme is reasonably nice. This is the content of [HK18, Proposition
6.14] which we now recall precisely:

Theorem (Huber–Kelly). Suppose the Noetherian base scheme S is Nagata.
Then for any two schemes X,T of finite type over S we have Lcdh(X/S)(T ) =
HomS(T sn, X). Furthermore the natural maps

Lrh(X/S)→ Lcdh(X/S)→ Leh(X/S)→ Lsdh(X/S)→ hX/Sval

are isomorphisms of presheaves on the category of finite type S-schemes.

The similarity of these two theorems fits in a paradigm where semi and (ab-
solute) weak normality frequently possess similar properties. This observation
led to a construction, developed in collaboration with Stavnes, whose purpose
is to yield a uniform theory of the twin notions of semi and (absolute) weak
normality. One of the applications of our theory is Theorem 4.3.9 which both
essentially extends [HK18, Proposition 6.14] to all Noetherian schemes over S
and also gives a special case of Rydh’s description of representable sheaves in
the h topology.

We previously mentioned that a vital step in the proofs of our main the-
orems is to understand how certain representable functors compare to their
sheafifications. This is achieved in the following theorem:

Theorem (5.0.1). Let S be a Noetherian scheme and M/S be a commutative
monoid object in the category of schemes over S and t be any Grothendieck
topology finer than the uh topology and coarser than the h topology. Suppose
further that the morphism M → S is flat, locally of finite type and AF (Defini-
tion 1.5.26). Then after restricting the presheaves hM/S and its t-sheafification
Lt(M/S) to the category of seminormal Noetherian S-schemes the natural map

hM/S ⊗N Q+ → Lt(M/S)⊗N Q+ (0.0.2)

becomes an isomorphism.

The idea behind the proof of this theorem is to combine the description
of values of representable sheaves in the h-topologies, in terms of universal
homeomorphisms, with an appropriate understanding of seminormality.
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Structure of the thesis

Chapter 1: Preliminaries and generalities

We recall miscellaneous notions and results that will be needed at various points
in the thesis.

Chapter 2: Relative cycles

In this second chapter we spend a lot of time recalling and familiarizing ourselves
with the theory of relative cycles as developed in [SV00]. Our presentation of
this material follows op.cit. rather closely, and sometimes adds some additional
explanations (the table at the end of the chapter gives an overview of how
our presentation compares to op.cit.). We also explain that Kollár’s families
of algebraic cycles satisfying the field of definition condition ([Kol96, Ch.I,
Def. 4.7]) coincide with the relative proper cycles with universally integral
coefficients, and we discuss the loci of points where relative cycles are effective
and vanish (Section 2.7).

Chapter 3: h-topologies

In this chapter we recall Voevodsky’s h-topology and some of its cousins. We
discuss refinements of coverings in the h-topology by following and extending
material found in [Voe96]. Furthermore we consider the presheaves of relative
cycles in the context of the h-topologies essentially following [SV00]. We also
briefly discuss some more general theory concerning sheaves in the qfh-topology.
The final section of the chapter provides a table describing where we have
extended results and/or expanded on proofs from the papers [Voe96], [SV96]
and [SV00].

Chapter 4: Generalized seminormalization with applications

We introduce a construction whose purpose is to give a simple and uniform
way to study properties of the twin theories of semi and weak normality. We
state and prove several properties of our construction first for rings and then
extend the construction to schemes. The final section of the chapter is an
application to the study of representable sheaves in the h-topologies where we
prove Theorem 4.3.9.

Much of this chapter was written in collaboration with Jarle Stavnes.

Chapter 5: Representable monoids in the h-topology

The sole purpose of this chapter is to prove Theorem 5.0.1 which is a key
ingredient in the proofs of both our main theorems.
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Chapter 6: Chow schemes and Chow monoids

The purpose of this chapter is to construct the Chow monoid of r dimensional
cycles on a projective scheme and prove the first main theorem (Theorem 6.5.3).

The construction of the Chow monoid requires some intersection theory and
the concept of relative effective Cartier divisors which we recapitulate. We also
need to prove in a precise manner the fact that the presheaf of relative cycles
of dimension r and degree d is representable in the h-topology as discussed
in [SV00, Ch.4, Sec.4]. To achieve this latter task we explain and apply
methodology from loc.cit. and [Kol96, Ch.I, Sec.3,4].

Chapter 7: Relative zero cycles via symmetric powers

In this final chapter we prove the second main theorem (Theorem 7.2.1) of the
thesis.

A note to the reader

The author has written this thesis with the aim that it should be understandable
to most algebraic geometers. For this reason chapters 1, 2, 6 and 7 all have (to
varying extent) some overlap with [SV00]. Moreover chapters 3 and 7 will at
times closely follow [Voe96]. Whenever a statement is similar to one found in
the literature it will be emphasised, and in that case we do our best to explain
how the proofs compare. In fact we have added a table at the end of Chapters
2, 3 and 6 that explains how our presentation of the material taken from the
work of Suslin–Voevodsky (and other sources) compares to the original.

We have also included several appendices for the convenience of the reader
not already familiar with one or more of these topics. The appendices differ
from the first chapter in the sense that they will be referred to a lot less
frequently and are therefore not as in depth.

By default we usually use the terminology and definitions of the stacks-
project, and always try to let the reader know when this is not the case. Most
of the time our schemes will be taken to be separated, but there are a few
points where this is not necessary.
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Chapter 1

Preliminaries and generalities

The purpose of this chapter is to collect general definitions and results, mostly
from [GD67],[Bou64],[Bou03] and [Gro71], that are central to the theory of
this thesis. We only provide proofs in the cases where we either did not find a
reference in the literature, or when we think the reader not already familiar
with the topic in question can pedagogically benefit from reading a proof.

On a first reading we recommend only reading Section 1.1, Section 1.2 and
Section 1.7, the rest of the material in this chapter is not used as often and
can be picked up when needed.

The statements of the chapter are either well known or easily deduced from
such results.

1.1 Universally equidimensional morphisms

In this section we will assume all schemes to be separated to be on the safe
side.

Dimension at a point

Definition 1.1.1 ([GD67, Ch.0, (14.1.2.)]). Let X be a topological space. For
a given x ∈ X, we define the dimension of X at x denoted by dimx(X) to be the
number infU (dim(U))1 where the infimum runs over the open neighborhoods
of x.

Remark 1.1.2. Since the natural numbers are well ordered, we can find an
open neighborhood U of x such that dim(U) = dimx(X).

We mention a few of the properties of the pointed dimension function dimx.

Proposition 1.1.3 ([GD67, (14.1.6)]). For every topological space X, we have
dim(X) = supx∈X dimx(X).

1In this thesis the number dim(U) denotes the combinatorial dimension of U
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Proposition 1.1.4. Suppose X is a Noetherian topological space satisfying
the (T0)-axiom and let F denote the set of closed points of X, then dim(X) =
supx∈F dimx(X).

Proposition 1.1.5 ([GD67, (14.1.11)]). The function x 7→ dimx(X) is upper
semi-continuous.

Lemma 1.1.6. For an irreducible variety X we have that dimx(X) = dim(X)
for every x ∈ X.

Proof. This follows because if U is any nonempty open subset of X then
dim(U) = dim(X).

Proposition 1.1.7. Suppose that X is an algebraic scheme and U is any
nonempty open subset of X. Let X1, . . . , Xm denote the irreducible components
of X meeting U . Then

dimU = sup
1≤i≤m

dimXi.

Proof. The irreducible components of U are X1∩U, . . . ,Xm∩U and by Lemma
1.1.6 we have that dim(Xi) = dimU ∩Xi hence the result follows.

Corollary 1.1.8. Suppose that X is an algebraic scheme. Then for a point
x ∈ X, let X1, . . . , Xm denote the irreducible components of X containing the
point x. Then we have

dimx(X) = sup
1≤i≤m

dimXi.

Corollary 1.1.9. Suppose X is an equidimensional2 algebraic scheme of di-
mension r, then for any open subscheme U we have dim(U) = dim(X) and in
particular we have dimx(X) = r for all x ∈ X.

Proof. Follows immediately from Proposition 1.1.7.

Definition 1.1.10. For a morphism p : X → S of schemes denote by
dim(X/S) the function on the set of points of X of the form dim(X/S)(x) :=
dimx(p−1(p(x))), which we shall call the local fiber dimension function of X/S.

Lemma 1.1.11. Let p : X → S be a morphism of schemes. For any point
x ∈ X we have that dimX/S(x) is at least the dimension of the closure of x in
p−1(p(x)).

Proof. Follows immediately from Corollary 1.1.8.

We recall the following version of Chevalley’s theorem:
2As usual we say that a scheme or a topological space X is equidimensional or of pure

dimension if for any pair of irreducible components X1, X2 of X we have dim(X1) = dim(X2).
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Theorem 1.1.12 ([GD67, Th. 13.1.3]). (Chevalley) Let p : X → S be a
morphism of finite type. Then for any n ≥ 0 the subset {x ∈ X | dimX/S(x) ≥
n} is closed in X. In other words the function dim(X/S) is upper semi-
continuous.

Universally equidimensional morphisms

Definition 1.1.13 ([SV00, Def. 2.1.2]). A morphism of schemes p : X → S is
called an equidimensional morphism of dimension r if the following conditions
hold:

1. The morphism p is of finite type.

2. The function dim(X/S) is constant and equals r.

3. Any irreducible component of X dominates an irreducible component of
S.

A morphism of schemes p : X → S is called universally equidimensional
of dimension r if for any morphism S′ → S the projection X ×S S′ → S′ is
equidimensional of dimension r.

Finally, we say that p : X → S is a morphism of dimension ≤ r if
dim(X/S)(x) ≤ r for all points x of X.

Proposition 1.1.14. In the definition of an equidimensional morphism 1.1.13
condition 2 can be replaced with the condition that for any point x of X the
scheme p−1(p(x)) is equidimensional of dimension r.

Proof. If the function dim(X/S) is constant and equal to r, then by definition
we have

dim p−1(p(x)) ≥ dim(X/S)(x) = r.

If η is a generic point of Y = p−1(p(x)) then dim(X/S)(η) = r and we can find
an open subset U of η not containing the other generic points of Y such that
dim(U) = r hence we have that any irreducible component of Y has dimension
at least r. On the other hand if Yi is an irreducible component of Y and
C0 ( . . . ( Cm = Yi is a maximal chain of closed irreducible subsets of Yi,
then letting z be the generic point of C0 we can find some open neighborhood
U of the point z of dimension r, but then we must have m ≤ r hence every
irreducible component of Y has dimension at most r as well.

The converse statement follows immediately from Corollary 1.1.9.

Lemma 1.1.15. Conditions 1 and 2 in Definition 1.1.13 are both stable under
base change.

Proof. It is well known that finite type morphisms are stable under basechange.
For Item 2 see [Stacks, Tag 02FY].
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Lemma 1.1.15 does not imply that every equidimensional morphism is
universally equidimensional. Indeed Item 3 of Definition 1.1.13 is not necessarily
stable under base change:

Example 1.1.16. Let L1, L2 be two lines in the affine plane intersecting in
a point. Let S = L1 ∪ L2 and note that the inclusions of L1, L2 in S induce
a morphism X = L1

∐
L2 → S. This morphism is obviously equidimensional,

but the base change L1×S X = (L1 ∩ L1)
∐

(L1 ∩ L2) → L1 is clearly not
equidimensional.

We give some examples and counter examples to morphisms which are
equidimensional.

Example 1.1.17.

1. Those familiar with Pseudo-Galois coverings (Definition 2.5.11) will see
from [SV96, Corollary 5.10] that such morphisms are universal equidi-
mensional morphisms of dimension 0 when the base scheme is normal.

2. The vector bundle p : B → X induced by a finite type quasi-coherent
sheaf F of (constant) rank n on a scheme X is a universal equidimensional
morphism of dimension n. Indeed this follows easily from the fact that
the pullback of F to Xred must necessarily be locally free of rank n.

3. A simple example of a morphism whose fibers are not equidimensional is
to consider two lines L1, L2 intersecting at a point and then mapping this
scheme to L1 and mapping the entire L2 to the point of intersection. Con-
sider for instance V (y) ∪ V (x) = Spec(k[x, y]/(xy)) → A1

k = Spec(k[t])
given by t 7→ x.

4. Another nice example of a morphism which fails to be equidimensional
would be to consider the map p : A2

k → A2
k induced by x 7→ x2, y 7→

(1− x)y. The fiber

p−1(p(1, 0)) = p−1((1, 0))

has two irreducible components one being a line and the other a point,
hence p is not an equidimensional morphism 3.

The next proposition shows that Item 2 of Example 1.1.17 is not so far
from the only equidimensional morphisms.

Proposition 1.1.18 ([SV00, Prop.2.1.3]). Let p : X → S be a morphism of
finite type of Noetherian schemes. Then p is equidimensional of dimension r if

3This last example was pointed out to the author by Remy van Dobben de Bruyn.
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and only if for any point x of X there is an open neighborhood U in X and a
factorization of the morphism pU : U → S of the form

U
p0→ ArS → S

such that p0 is a quasi-finite morphism and any irreducible component of U
dominates an irreducible component of ArS.

Proof. See [GD67, 13.3.1(b)]

Corollary 1.1.19. Let p : X → S be an equidimensional morphism of di-
mension r. If X ′ is any irreducible component of X then the composition
X ′ → X

p→ S is also an equidimensional morphism of dimension r.

Proof. Let x be a point of X ′, and let U be an open neighborhood of x in
X such that we have a factorization of the morphism pU : U → S of the
form U

p0→ ArS → S as in Proposition 1.1.18. Then U ×X X ′
p0→ ArS → S is a

factorization of U ×X X ′ → X ′ → X
p→ S and it is clear that U ×X X ′ has

only got one irreducible component corresponding to the generic point of X ′,
thus it must dominate an irreducible component of ArS .

In this thesis we will occasionally work with so called (geometrically)
unibranched schemes. The reader not familiar with this notion is encouraged to
consult Chapter C or simply replace it with the special case of normal schemes
throughout.

Proposition 1.1.20 ([SV00, Prop.2.1.7]). Let p : X → S be a morphism of
finite type of Noetherian schemes. The following implications hold:

1. If p is a universally equidimensional morphism, then p is universally
open.

2. If dim(X/S) = r and p is open (resp. universally open) then p is equidi-
mensional (resp. universally equidimensional) of dimension r.

3. If S is geometrically unibranch and p is equidimensional then p is univer-
sally equidimensional (and hence universally open).

Proof. A clear proof can be found in [SV00]

Corollary 1.1.21 ([SV00, p.8, Rmk 3]). Let p : X → Spec(k) be a morphism
of finite type. Then p is universally equidimensional of dimension r if and only
if all irreducible components of X have dimension r.

Proof. Follows immediately from Proposition 1.1.20 Item 3.

The following results tell us how to check that if a given flat morphism is
of relative dimension r.
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Lemma 1.1.22 ([Stacks, Tag 0D4H]). Let f : X → Y be a flat morphism
of schemes of finite presentation. Let nX/Y : Y → N be the function on Y
giving the dimension of fibres of f given by y 7→ dimXy. Then nX/Y is lower
semi-continuous.

Proposition 1.1.23 ([SV00, Prop. 2.1.8]). Let p : X → S be a flat morphism
of finite type with S a Noetherian scheme. Then p is universally equidimensional
of dimension r if and only if for any generic point y : Spec(K)→ S of S the
projection X ×S Spec(K) → Spec(K) is equidimensional of dimension r (or
the fiber is empty).

Proof. The proof that we shall give here was pointed out to the author by
Remy van Dobben de Bruyn.

Note that one direction is trivial. For the other note that by universal
openness of flat morphisms of finite presentation ([Stacks, Tag 01UA]) and our
assumptions we have that the scheme Xp(g) is equidimensional of dimension
r for every generic point g of X. Thus by Corollary 1.1.9 it follows that
dim(X/S)(g) = r for every generic point g of X hence by Chevalley’s theorem
1.1.12 we conclude the equality of sets

X = {x ∈ X | dim(X/S)(x) ≥ r}

Suppose now for the sake of contradiction that there is some x ∈ X such that
dim(X/S)(x) > r. Then we must have

dimXp(x) > r

and p(x) is contained in the set U = {y ∈ Y : dimXy > r} which by Lemma
1.1.22 is open. But then p−1(U) is a non-empty open subset of X thus contains
at least one generic point of X giving a contradiction.

Proposition 1.1.24 ([SV00, Proposition 2.1.9]). Suppose p : X → S is an
equidimensional morphism of relative dimension r such that X is irreducible.
Suppose that p admits a decomposition of the form

X
p0→W

p1→ S

with p0 surjective and proper and p1 has at least one fiber of dimension r. Then
p1 is equidimensional of dimension r and p0 is finite in the generic point of W .

Lemma 1.1.25 ([SV00, Lemma 2.1.10]). Let p : X → S be a morphism such
that any irreducible component of X dominates an irreducible component of S
and i : X0 → X be a closed embedding which is an isomorphism over the generic
points of S. Then i is defined by a nilpotent sheaf of ideals. In particular,
p is a universally equidimensional morphism of dimension r if and only if
p0 : X0 → S is a universally equidimensional morphism of dimension r.
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Corollary 1.1.26 ([SV00, Lemma 2.1.11]). Let X → S be a scheme of finite
type over a Noetherian scheme S, Z ⊂ X be a closed subscheme universally
equidimensional of relative dimension r over S and S′ → S be a blow-up of S.
Let Z̃ be the proper transform of Z in X ×S S′. Then Z̃ is a closed subscheme
of Z ×S S′ defined by a nilpotent sheaf of ideals.

Proof. Since Z ×S S′ is equidimensional over S′ and hence its generic points
lie over generic points of S′ our statement follows from Lemma 1.1.25.

1.2 Flatification by blowing-up

The flatification theorem from [RG71] plays a crucial role in the theory of
relative cycles. Before stating the theorem we briefly recall the proper transform.
We keep the assumption that our schemes are separated throughout this section.

Definition 1.2.1. Let Z be a closed subscheme of a scheme S. Let p :
S′ → S be the blowup of S with center in Z. For a scheme Y → S over S,
denote by Ỹ the scheme theoretic closure in Y ×S S′ of the open subscheme
Y ×S S′ \ pr−1

2 (p−1(Z)). The scheme Ỹ is called the strict transform or proper
transform of Y with respect to p.

Lemma 1.2.2. Suppose that S is a scheme and f : Y → S be any scheme over
S. For any closed subscheme Z of S let p : S′ → S be the blow-up of S with
center Z. Then the proper transform

Ỹ Y ×S S′/

is an isomorphism over the open subscheme S′ \p−1(Z). Hence an isomorphism
over all the generic points of S′.

Proof. Let i : Y ×S S′ \ pr−1
2 (p−1(Z))→ Y ×S S′ denote the open embedding.

We have that the proper transform Ỹ is cut out by a subsheaf of

Ker
(
i# : OY×SS′ → i∗OY×SS′\pr−1

2 (p−1(Z))

)
which obviously vanishes over S′ \ p−1(Z). The last statement because p−1(Z)
is an effective Cartier divisor and thus contains no generic points of S′.

Theorem 1.2.3 (Flatification by blowup). Let f : X → S be a morphism of
finite type of Noetherian schemes, which is flat over an open subset U ⊂ S.
Then there exists a closed subscheme Z ⊂ S disjoint with U such that if S′

denotes the blow up of S in Z then the proper transform X̃ is flat over S′.

Proof. This is the statement of [Voe96, Theorem 3.1.8]. For a proof see [RG71,
Sec. 5.2] where the result originates from, or one can see [Stacks, Tag 081R].
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1.3 Valuation rings and valuative criteria

Valuation rings

Let us briefly recall the basic theory of valuation rings.

Definition 1.3.1. Valuation rings.

1. Let K be a field. Let A, B be local rings contained in K. We say that B
dominates A if A ⊂ B and mA = A ∩mB.

2. We say that a local ring R is a valuation ring if R is an integral domain
and maximal with respect to the order relation of domination among
local rings contained in the fraction field of R.

3. Let R be a valuation ring with field of fractions K. If A ⊂ K is a subring
of K, then we say that R is centered on A if A ⊂ R.

Lemma 1.3.2. Let K be a field. Let A ⊂ K be a local subring. Then there
exists a valuation ring with fraction field K dominating A.

Proof. See [Stacks, Tag 00IA].

A proof of the following Lemma is given in [Stacks, Tag 00IB].

Lemma 1.3.3. Let R be an integral domain with field of fractions K. Then
R is a valuation ring if and only if for any x ∈ K we either have x ∈ R or
x−1 ∈ R (or both).

Lemma 1.3.4. Let A be a ring. Then every specialization p1 ⊆ p2 is covered
by some homomorphism A→ R, where R is a valuation ring. Moreover, the
valuation ring R can be chosen such that its field of fractions is k(p1).

Proof. Consider the homomorphism g : A → (A/p1)p2 , and let (R,mR) be
a valuation ring dominating (A/p1)p2 in its field of fractions (Lemma 1.3.2).
Consider the inclusion f : (A/p1)p2 → R. Then f−1(mR) = p2(A/p1)p2 and
f−1(0) = (0). Consider the homomorphism h = f ◦ g : A → R. Then
h−1(mR) = p2 and h−1(0) = p1. In other words h covers the specialization
p1 ⊆ p2.

Lemma 1.3.5. Let R be a valuation ring. For any prime ideal p ⊂ R, the
quotient R/p is a valuation ring. Furthermore, any localization of R is again a
valuation ring.

Proof. See [Stacks, Tag 088Y].

Lemma 1.3.6. Any valuation ring R is normal.

Proof. A proof is given in [Stacks, Tag 00IC].
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Lemma 1.3.7. Let R → R′ be an inclusion of valuation rings, and assume
that the induced morphism Spec(R′)→ Spec(R) is surjective. Then

R′ ∩R(0) = R ⊂ R′(0). (1.3.1)

Proof. Suppose that x ∈ R′ ∩R(0). If x is not contained in R, then x−1 ∈ R,
which means that x is a unit in R′. Since the inverse image of the maximal
ideal of R′ must necessarily be the maximal ideal of R it follows then that
x−1 ∈ R cannot be contained in the maximal ideal of R. Thus x−1 is a unit in
R hence we have x ∈ R giving a contradiction.

Lemma 1.3.8. Let R be a valuation ring then every R-module without torsion
is flat over R. In particular if R → A is an injective ring homomorphism to
an integral domain then A is flat as an R-module.

Proof. See [Bou64, Ch. VI, Sec. 3.6, Lemma 1, Page 106].

Recall that a valuation ring which is not a field is said to be discrete if it
is Noetherian which is equivalent to being a local Noetherian normal domain
of dimension 1 and also equivalent to being a local Noetherian domain whose
maximal ideal is generated by a single nonzero element.

Proposition 1.3.9. Let R be a valuation ring with field of fractions K and
let L/K be any field extension. Then there exists an injection R→ R′ where
R′ is a valuation ring with field of fractions L such that the induced map
Spec(R′)→ Spec(R) is faithfully flat. If furthermore R is a discrete valuation
ring and L/K is a finite extension then the valuation ring R′ can be taken to
be discrete.

Proof. By Lemma 1.3.2 we can find a valuation ring R′ of L dominating R
and by Lemma 1.3.8 the map R→ R′ is a flat local homomorphism hence it
is faithfully flat. The final statement follows now directly from Krull-Akizuki
[Stacks, Tag 00PG].

Remark 1.3.10. It is possible to prove Proposition 1.3.9 in a (potentially)
more constructive way. Indeed if we first consider the case where the extension
L/K is algebraic then letting S denote the integral closure of R in L and m
any maximal ideal of S. Set R′ = Sm. By[Bou64, Ch.6, Sec. 6, Prop. 6, Page
147] R′ is a valuation ring and it follows easily from the going up and down
theorems that the induced map Spec(R′)→ Spec(R) is surjective.

In the case when L/K is a purely transcendental extension say L =
K({ti}i∈I) where the ti are independent variables. Let v : K× → Γ be
the valuation corresponding to R. For a polynomial P ∈ K[{ti}i∈I ] set

w(P ) := min{v(c) | c is a coefficient of P.} (1.3.2)

Then one can show that this induces a well defined valuation w of L with
value group Γ such that w extends v. Thus letting R′ denote the valuation
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ring corresponding to w we get an inclusion R ⊂ R′ with the induced map
Spec(R′)→ Spec(R) being surjective.

Now for the general case recall that any field extension L/K has some
transcendental basis hence we get a tower of field extensions K ⊂ L0 ⊂ L
where L0/K is purely transcendental and L/L0 is algebraic. By combining the
two steps described above we obtain the desired valuation ring R′.

Valuative criteria

Recall the valuative criterion of universal closedness which we will apply on
several occasions.

Proposition 1.3.11. (Valuative criterion of universal closedness) Let f be a
quasi-compact morphism of schemes. Then f is universally closed if and only
if f satisfies the existence part of the valuative criterion4.

Proof. See [Stacks, Tag 01KF].

Lemma 1.3.12. Let p : S′ → S be a quasi-compact, surjective and universally
closed morphism of schemes. Let R be a valuation ring, and let g : Spec(R)→ S
be some morphism, where R is a valuation ring. Then there exists a commutative
diagram

Spec(R′) S′

Spec(R) S

g′

h p

g

(1.3.3)

such that R′ is a valuation ring and h is faithfully flat. Moreover, R′ can be
chosen such that R′ ∩R(0) = R, where the intersection is taken inside the field
of fractions of R′. Further still if R is a discrete valuation ring and p is also
assumed to be of finite type then R′ may be chosen such that it is a discrete
valuation ring.

Proof. Let K denote the field of fractions of R. Since p is surjective we can
find some field extension L/K and a map j : Spec(L) → S′ such that the
compositions of morphisms

Spec(L)→ Spec(K)→ Spec(R)→ S

coincides with the composition p◦j. By Proposition 1.3.9 we get an inclusion of
valuation rings R→ R′ where L is the field of fractions of R′ and the induced
map h : Spec(R′)→ Spec(R) is surjective. The existence of the desired map g′

follows now from the valuative criterion of universal closedness (1.3.11).
It follows from Lemma 1.3.7 that R′ can be chosen such that R′ ∩R(0) = R.
For the final statement note that if p is of finite type then the field extension

L/K can be taken to be finite.
4See [Stacks, Tag 01KD].
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Remark 1.3.13. The final statement of this lemma is [SV00, Lemma 3.3.4].
More generally [Ryd10, Corollary 2.9] states that if p is a quasi-compact
morphism then there exists a diagram of the form (1.3.3) if and only if p is
universally subtrusive. We will not define this notion here, but we let the reader
know there are many examples of subtrusive morphisms such as for instance
any surjective universally open morphism; See [Ryd10, Remark 2.5] for more
examples.

There is also a valuative criterion for flatness, which will only be used at
one point in this thesis.

Theorem 1.3.14 (Valuative criterion for flatness). Let f : X → Y be a
morphism locally of finite presentation, F a quasi-coherent OX-module of finite
presentation, x a point of X and y = f(x) ∈ Y . Suppose that the local ring
OY,y is integral (resp. reduced and Noetherian). For F to be f-flat at x it is
sufficient and neccesary that for any valuation ring (resp. discrete valuation
ring) A′ and local ring homomorphism OY,y → A′ the following condition is
satisfied: Setting Y ′ = Spec(A′), X ′ = X ×Y Spec(A′) and f ′ = X ′ → Y ′

the projection, the OX′ module F ′ = F ⊗Y Y ′ is f ′-flat at every point x′ of
X ′ mapping to x ∈ X and the closed point y′ ∈ Y ′ under the two projections
X ′ → X and X ′ → Y ′ respectively.

Proof. This is [GD67, (11.8.1)].

1.4 Fields and related notions

Integral closure in extensions of total rings of fractions

We recollect a bunch of results concerning integral closure in extensions of fields
of fractions that will implicitly be used on several occasions.

Definition 1.4.1. For a ring A let S = {f ∈ A | f is not a zerodivisor in A}.
This is a multiplicative subset of A. In this case the ring Q(A) = S−1A is
called the total ring of fractions of A.

Lemma 1.4.2. Let R be a reduced ring. Then

1. R is a subring of a product of fields,

2. R→
∏

p minimalRp is an embedding into a product of fields,

3.
⋃

p minimal p is the set of zerodivisors of R.

Proof. See [Stacks, Tag 00EW]

The following Lemma is proved in [Stacks, Tag 02LX].
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Lemma 1.4.3. Let R be a ring. Assume that R has finitely many minimal
primes q1, . . . , qt, and that q1 ∪ . . . ∪ qt is the set of zerodivisors of R. Then
the total ring of fractions Q(R) is equal to Rq1 × . . .×Rqt .

Lemma 1.4.4. Let X be a reduced scheme such that every quasi-compact open
subset has finitely many irreducible components. Let Spec(A) = U ⊂ X be an
affine open. Then

1. A has finitely many minimal primes q1, . . . , qt,

2. the total ring of fractions Q(A) of A is Q(A/q1)× . . .×Q(A/qt),

3. the integral closure A′ of A in Q(A) is the product of the integral closures
of the domains A/qi in the fields Q(A/qi), and

4. ν−1(U) is identified with the spectrum of A′ where ν : Xν → X is the
normalization morphism.

Proof. See [Stacks, Tag 035P].

Lemma 1.4.5. Let Ri → Si be ring maps i = 1, . . . , n. Denote the integral
closure of Ri in Si by S′i. Further let R and S denote the product of the Ri and
Si respectively. Then the integral closure of R in S is the product of the S′i. In
particular R→ S is integrally closed if and only if each Ri → Si is integrally
closed.

Proof. A proof can be found in [Stacks, Tag 0CY9].

Lemma 1.4.6. Let A be a reduced ring with finitely many minimal prime
ideals say p1, . . . , pt . For each such minimal prime ideal pi suppose that Li is
a field extension of the field k(pi) = Api. For each i let Ai (resp. Ãi) denote
the integral closure of A→ k(pi) (resp. of A→ k(pi)→ Li).

The integral closure Ã of A in A →
∏t
i=1 k(pi) →

∏t
i=1 Li is the product∏

i Ãi. Hence there is a one to one correspondence between minimal primes of
Ã and those of A. Moreover if all the extensions Li/k(pi) are algebraic then
the field of fractions of Ãi coincides with Li and the total ring of fractions Q(Ã)
of Ã is the product

∏
i Li.

Proof. Letting A =
∏t
i=1Ai denote the integral closure of A in Q(A) we have

by Lemma 1.4.5 that the integral closure of A (and hence of A ) in
∏t
i=1 Li is

the product
∏t
i=1 Ãi.

Lemma 1.4.7. Let A,A′ be reduced rings and A → A′ a faithfully flat ring
homomorphism. Let A denote the integral closure of A in its total ring of
fractions Q(A). Then A′ and A′ ⊗A A have the same total ring of fractions.
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Proof. Let S = A \ ∪p minimal p denote the set of non-zero divisors of A . Since
flat ring homomorphisms satisfy the goingdown property we easily see that
if s ∈ S then the image of s in A′ cannot be a zero divisor of A′, hence
Q(A′) = Q(S−1A′). Now consider the following commutative diagram

A A S−1A = Q(A)

A′ (A′ ⊗A A) S−1A′.

(1.4.1)

By faithful flatness it follows that all horizontal arrows are injections ([Stacks,
Tag 00HO]) and one easily checks that each of these horizontal arrows has the
property that non-zero divisors are mapped to non-zero divisors. Thus we get
induced injections

Q(A′) Q(A′ ⊗A A) Q(S−1A′) = Q(A′) (1.4.2)

and since the composition of these maps is an isomorphism we conclude that
the map Q(A′)→ Q(A′ ⊗A A) is also an isomorphism.

Separable extensions

We recall the basic theory of separable field extensions.
Recall that an algebraic field extension L/K is separable if for any element

x ∈ L the corresponding minimal polynomial is relatively prime to its derivative.
The following definition found in (for instance) [Stacks, Tag 030O] defines

separability for arbitrary field extensions.

Definition 1.4.8. Let k ⊂ K be a field extension.

1. We say K is separably generated over k if there exists a transcendence
basis {xi; i ∈ I} ofK/k such that the algebraic extension k(xi; i ∈ I) ⊂ K
is separable.

2. We say K is separable over k if for every subextension k ⊂ K ′ ⊂ K with
K ′ finitely generated over k, the extension k ⊂ K ′ is separably generated.

Note that if k is a field of characteristic zero then any field extension of k
is necessarily separable.

Lemma 1.4.9. Let k be a field. Let S be a reduced k-algebra. Let k ⊂ K be
either a separable field extension, or a separably generated field extension. Then
K ⊗k S is reduced.

Proof. See [Stacks, Tag 030U].
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As suggested by Lemma 1.4.9 separable field extensions are closely related
to the notion of geometrically reduced algebras which we now recall in the
following definition:

Definition 1.4.10. Let k be a field. Let S be a k-algebra. We say S is
geometrically reduced over k if for every field extension k ⊂ K the K-algebra
K ⊗k S is reduced.

Lemma 1.4.11. Let k be a field. If R is geometrically reduced over k, and
S ⊂ R is a multiplicative subset, then the localization S−1R is geometrically
reduced over k.

Proof. See [Stacks, Tag 04KN].

Lemma 1.4.12. Let k ⊂ K be a field extension. Then K is separable over k
if and only if K is geometrically reduced over k.

Proof. One implication follows directly from Lemma 1.4.9. For the other see
[Stacks, Tag 030W].

Lemma 1.4.13. Let k ⊂ K ′ ⊂ K be a tower of field extensions and suppose
that K ′/k and K/K ′ are separable. Then K/k is separable.

Proof. Follows easily from Lemma 1.4.12 and Lemma 1.4.9.

Lemma 1.4.14. Let k ⊂ K be a separable extension and let k ⊂ L be any field
extension. Then if p is any minimal prime ideal of S = L⊗kK then E = Sp is
a field and the canonical map L→ E is a separable field extension.

Proof. It follows from Lemma 1.4.12 that S is a geometrically reduced L-algebra.
By Lemma 1.4.11 it follows that E is a geometrically reduced L-algebra and
since E is reduced with exactly one prime ideal it is necessarily a field. By
Lemma 1.4.12 again we conclude.

In order to be self contained we also recall the definition of a perfect field.

Definition 1.4.15. Let k be a field. We say k is perfect if every field extension
of k is separable over k.

Lemma 1.4.16. Let k be a field.

1. If k is of characteristic zero then k is perfect.

2. if k is of characteristic p > 0 then k is perfect if and only if every element
of k has a p’th root in k.

Proof. See [Stacks, Tag 030Z].
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Purely inseparable extensions

Basics

Recall that the exponential characteristic of a field is defined to be 1 if it is of
characteristic zero, otherwise it is the same number as the characteristic of the
field. For a field k of exponenital characteristic p and a field extension K/k
we recall that an element x ∈ K is purely inseparable over k if there exists a
power q of p such that xq ∈ k. The field extension K/k is said to be purely
inseparable5 if every element x ∈ K is purely inseparable over k. We summarise
the basic properties of such extensions here:

Proposition 1.4.17 ([Bou03, Ch. V., Sec. 5.1]). Let k be a field of exponential
characteristic p and K/k a field extension. The following statements hold true:

1. If x ∈ K is purely inseparable over k and e is the smallest positive
integer such that xpe ∈ k then the minimal polynomial of x over k is
P (X) = Xpe − xpe and we have [k(x) : k] = pe.

2. Let (K)pi denote the subset of K consisting of those elements which are
purely inseparable over k. Then (K)pi is a subextension of K/k and it is
the largest purely inseparable extension of k contained in K.

3. Suppose that the extension K/k is purely inseparable. Then given a
morphism u : k → E where E is a perfect field, there is a unique map
v : K → E extending u.

4. Suppose the field extension K/k is finite and purely inseparable. Then
the degree [K : k] is a power of p.

Definition 1.4.18. For an field extension K/k we define the purely inseparable
closure of k in K, denoted (K)pi, to be the field extension found in Item 2 of
Proposition 1.4.17.

Lemma 1.4.19 ([Stacks, Tag 030K]). Let K/k be an algebraic field extension.
There exists a unique sub extension k ⊂ Ksep ⊂ K such that Ksep/k is separable
and K/Ksep is purely inseparable.

Definition 1.4.20. For a field extension K/k we will call the extension Ksep

found in Lemma 1.4.19 the separable closure of k in K. Furthermore if K/k
is a finite extension we also introduce the following numbers:

1. The integer [Ksep : k] is called the separable degree of the extension K/k
we will denote this integer by [K : k]sep .

2. The integer [K : Ksep] is called the inseparable degree and we denote it
by [K : k]insep .

5This also goes by the name p-radical in the literature.
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Lemma 1.4.19 tells us that any algebraic extension can be decomposed into
a separable extension followed by a purely inseparable one. The opposite is
possible in the case of a normal extension:

Lemma 1.4.21 ([Rom06, Thm.3.6.4]). Let K/k be a normal extension. Then
the subfield (K)pi coincides with the subfield KG of elements invariant under
the action of G = Gal(K/k). Furthermore in the tower

k ⊂ (K)pi ⊂ K (1.4.3)

the first step is purely inseparable and the second step is separable.

Other characterizations

In Chapter 4 we will apply a few other equivalent characterizations of purely
inseparable extensions which we now will start to recall. To this extent we will
first need a standard result in descent theory.

Lemma 1.4.22. Let f : A → A′, g : A → B be ring homomorphisms with f
faithfully flat. Then the following statements hold true:

1. The induced map A′ → A′ ⊗A B is injective if and only if g : A→ B is.

2. If the equivalent conditions of 1 are satisfied then the following pushout
diagram

A B

A′ A′ ⊗A B

(1.4.4)

is also a pullback diagram.

Proof. The first statement follows easily from [Stacks, Tag 00HO]. For the
second it is enough to show that if a′ ∈ A′ and b ∈ B satisfy the equality

a′ ⊗A 1 = 1⊗A b (1.4.5)

then there exists (necessarily unique) a ∈ A such that a′ = f(a), b = g(a). By
flatness of f we get a canonical isomorphism of A-modules

A′ ⊗A (B/A) ∼= A′ ⊗A B/(A′ ⊗A A) (1.4.6)

and by applying [Stacks, Tag 00HO] we get that the map

(B/A)→ (A′ ⊗A (B/A)) ∼= A′ ⊗A B/(A′ ⊗A A) (1.4.7)

given by b 7→ b⊗ 1 is injective. Thus if a′ ⊗A 1 = 1⊗A b is satisfied then the
image of b in B/A is zero hence there is some a ∈ A with b = g(a) and we must
necessarily have a′ = f(a).
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The next lemma may be considered a baby case of Manaresi’s characterisa-
tion of weak normalization:

Lemma 1.4.23. Let K/k be a field extension. The following diagram is an
equalizer

(K)pi K (K ⊗k K)red
(⊗1)red

(1⊗)red
(1.4.8)

Proof. Suppose that x ∈ K is purely inseparable over k. Then if p denotes
the exponential characteristic of K we have some q = pn for n ≥ 1 such that
(x⊗ 1− 1⊗ x)q = 0 ∈ K ⊗k K hence

(x⊗ 1)red = (1⊗ x)red. (1.4.9)

To finish the proof it is enough to show that if x ∈ K satisfies (x ⊗ 1)red =
(1⊗ x)red then x ∈ (K)pi. Indeed suppose the last equality holds then we can
find some N such that (x⊗ 1− 1⊗ x)N = 0 and we may assume that N = pn

for some n ≥ 1. Thus xN ⊗ 1 = 1 ⊗ xN ∈ K ⊗k K. By Lemma 1.4.22 we
conclude that xN ∈ k.

We will also need the following characterisation of purely inseparable exten-
sions which is a rather special case of [GD71, Proposition (3.7.1)] (or Lemma
1.4.28 which we will recall in the next subsection).

Lemma 1.4.24. Let K/k be a field extension. The following are equivalent:

1. The extension K/k is purely inseparable.

2. Given any field extension E/k there is at most one k-algebra extension
of K to E.

Proof. Clearly (1) implies (2). Conversely if (2) holds then for any x ∈ K we
must necessarily have that x⊗ 1, 1⊗x ∈ K ⊗kK have the same image in every
residue field of K ⊗k K hence by Lemma 1.4.23 we conclude that K/k is a
purely inseparable extension.

The above considerations lets us prove the following lemma which will play
a starring role in Chapter 4 (and not needed before that).

Lemma 1.4.25. Let F be an endofunctor on the category of fields and η :
Idfields → F be a natural transformation. The following are equivalent:

1. The field extension η(k) : k → F (k) is purely inseparable for all fields k.

2. The morphisms F (η(k)) : F (k) → F (F (k)) and η(F (k)) : F (k) →
F (F (k)) coincide for all fields k.
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Proof. We always have

F (η(k)) ◦ η(k) = η(F (k)) ◦ η(k) (1.4.10)

Thus if (1) holds then clearly (2) holds as well. Conversely if (2) holds then
if t1, t2 : F (k)→ K are two k-algebra homomorphisms to a field K such that
t1 ◦ η(k) = t2 ◦ η(k) it follows that

η(K) ◦ ti = F (ti) ◦ η(F (k)) = F (ti ◦ η(k)) (1.4.11)

for i = 1, 2. Hence η(K) ◦ t1 = η(K) ◦ t2 thus t1 = t2.

Example 1.4.26 (Perfect closure). Let k be a field. There exists a perfect
field kPerf called the perfect closure of k and a field extension uk : k → kPerf

such that if v : k → K is any other field extension to a perfect field then there
exists a unique morphism h : kPerf → K such that v = h ◦ uk

We sketch the construction of kPerf here: If k is a field of characteristic
0 then set kPerf = k and let uk be the identity map. Otherwise if k is of
characteristic p > 0 we proceed as follows: For each n ∈ N set kn := k and for
m ≥ n let in,m : kn → km be the map given by x 7→ xp

m−n and let kPerf be
the (directed) colimit in the category of rings of this diagram. Let uk be the
canonical map from k = k0 to the colimit kPerf . To see that the ring kPerf is
in fact a field and satisfies the relevant universal property see [Bou03, Ch. V,
Sec.1.4, Thm 3] and [Bou03, Ch. V, Sec.1.4, Prop. 3].

Note that the assignment k 7→ kPerf is functorial and the morphism
uk : k → kPerf is natural in k. We will denote this natural transformation by
(−)Perf throughout.

Radicial morphisms

Recall the following definitions.

Definition 1.4.27. Let f : X → S be a morphism of schemes.

1. We say f is universally injective if for any morphism of schemes S′ → S the
base change f ′ : S′×S X → S′ is injective (on the underlying topological
spaces).

2. We say f is radicial if f is injective as a map of topological spaces, and for
every x ∈ X the induced map of residue fields fx/f(x) : k(f(x))→ k(x)
is purely inseparable.

3. We say f is a universal homeomorphism if for any morphism of schemes
S′ → S the base change S′×S X → S′ is a homeomorphism of underlying
topological spaces.

As mentioned earlier Lemma 1.4.24 is a special case of the following:
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Lemma 1.4.28. Let f : X → S be a morphism of schemes. The following are
equivalent:

1. For every fieldK the induced map Hom(Spec(K), X)→ Hom(Spec(K), S)
is injective.

2. The morphism f is universally injective.

3. The morphism f is radicial.

4. The diagonal morphism ∆X/S : X → X ×S X6 is surjective.

Proof. See [Stacks, Tag 01S4].

Corollary 1.4.29. Let f : X → S be a radicial morphism of schemes and
g1, g2 : Y → X be any two morphisms of schemes such that f ◦ g1 = f ◦ g2. If
Y is reduced then g1 = g2.

Proof. From Lemma 1.4.28 Part 1 it follows that for any field K and morphism
τ : Spec(K)→ Y we have g1 ◦ τ = g2 ◦ τ . From the fact that Y is reduced we
can now conclude that g1 = g2 ([Stacks, Tag 01KM]).

It is also useful to recall the following characterisation of universal homeo-
morphisms.

Lemma 1.4.30. Let f : X → S be a morphism of schemes. The following are
equivalent.

1. f is a universal homeomorphism.

2. f is integral, universally injective and surjective.

Proof. See [Stacks, Tag 04DF].

1.5 Group actions and quotients

Group actions on categories

We know that giving a left group action on a set X is the same as giving a
group homomorphism

ρ : G→ Aut(X)

and a right action is equivalent to group homomorphism from Gop . Since we
can take the automorphism group of any object in a category we can define
a group action of an object in a category completely analogous to the case of
sets:

6As in the literature the diagonal morphism ∆X/S (which is also sometimes denoted by
δX/S) is defined as the unique morphism satisfying pr1 ◦∆X/S = pr2 ◦∆X/S = idX .
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Definition 1.5.1. Let X be an object in a category C . A (left) group action
on X is a group homomorphism 7

ρ : G→ Aut(X).

If we have a fixed morphism f : X → S we say that G acts on S-automorphisms
of X if the image of ρ : G→ Aut(X) is contained in the subgroup AutS(X),
in otherwords if we have f ◦ ρ(σ) = f for all σ ∈ G.

Example 1.5.2. Let G be a finite group and X a scheme (or more generally
any object X in a category with finite coproducts). Then GX denotes the
scheme

∐
σ∈GXσ, where Xσ = X for each σ.

For a fixed σ ∈ G and any τ ∈ G consider the composition

Xτ
idX→ Xτσ ↪→ GX

In this way we get induced an automorphism ρ(σ) : GX → GX with inverse
ρ(σ−1). Note that we also have ρ(σ1σ2) = ρ(σ2) ◦ ρ(σ1) thus in this way we
get a right group action of G on GX .

Now suppose that f : X → S is a morphism and we have a group action
µ : G→ AutS(X). For a fixed σ ∈ G, the two morphisms (idX , µ(σ)) induce a
morphism Xσ = X → X ×S X and thus we get an S-morphism ψX/S : GX →
X ×S X. Moreover if S′ → S is any other S-scheme (or more generally an
object in the slice category of S), then letting X ′ := S′×S X (assuming the
fibered product exists), with projection pX : X ′ → X, we get induced a group
action µ′ : G → AutS′(X

′) where µ′(σ) : X ′ → X ′ is the unique morphisms
such that pX ◦ µ′(σ) = µ(σ) ◦ pX . Using universal properties it is readily
checked that the following diagram where the vertical arrows are the canonical
ones is commutative:

GX′ X ′×S′ X ′

GX X ×S X

ψX′/S′

ψX/S

If the morphism f : X → S is a finite morphism of schemes, then so is
ψX/S .

Definition 1.5.3. Suppose that C is a category with finite coproducts and G
a finite group.

1. For any X ∈ C we will call the object GX =
∐
σ∈GXσ

8 constructed in
Example 1.5.2 the object associated to the pair (X,G).

7A right group action is a group homomorphism ρ : Gop → Aut(X)
8Some authors denote this X ×G.
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2. If G acts on S-automorphisms of X, we shall denote the scheme GX by
GX/S and call the morphism ψX/S : GX/S → X ×S X as constructed in
Example 1.5.2 the graph of the pair (X,G)/S.

Definition 1.5.4. Let ρ : G→ Aut(X) be a group action on an object X in
C . A morphism f : X → Y is G-invariant if

f ◦ ρ(g) = f

for all g ∈ G. A (categorical) group quotient is a morphism

π : X → X/G

satisfying the following universal property: If f : X → Y is G-invariant, then
there exists a unique morphism

f̂ : X/G→ Y

such that
f = f̂ ◦ π.

Remark 1.5.5. There are other equivalent ways of defining the group quotient.

1. (Group quotient in terms of corepresentability) The group quotient can
also be defined in terms of co-representable functors; For an object X
and a group action of G on X, let (hX)G be the subfunctor of hX given
by

Y 7→ {f ∈ Hom(X,Y ) | f is G− invariant} .

The group quotient exists if and only if the functor (hX)G is co-representable
by an object X/G and in this case the universal element (also called
universal morphism) π : X → X/G is the group quotient as in Definition
1.5.4. Indeed if f ∈ (hX)G(Y ) then following the proof of the co-Yoneda
lemma, there is a unique morphism f̂ ∈ hX/G(Y ) such that

(hX)G(f̂)(π) = f̂ ◦ π = f.

So we see that π is the group quotient. Conversely if π : X → X/G is a
categorical group quotient, then we have a natural transformation

η : hX/G → (hX)G

given by
(f : (X/G)→ Y ) 7→ f ◦ π

and it is clear from the universal property that η is a natural isomorphism.

21



2. (Group quotient as a co-equalizer) The group quotient can also be defined
in terms of co-equalizers: Suppose C is a category with finite coproducts
and suppose that for a morphism X → S the fibered product X ×S X
exists. Let G be a group acting on S-automorphisms. If the group
quotient X/G exists it is the co-equalizer of the following commutative
diagram

GX/S X
pr1◦ψX/S

pr2◦ψX/S

Example 1.5.6.

1. For a finite integer d and a vector space we have that Symd(V ) = V ⊗d/Σd.

2. The group quotient exists in Sets and it is just the set of orbits under
the group action of G.

3. Similarly the set of orbits under the group action of G on a topological
space endowed with the finest topology making X → X/G continous
yields the group quotient.

4. For an algebraic field extension K ⊂ L, consider the category of subfields
of L containing K where there is a morphism E → E′ if and only if
E′ ⊂ E. The Galois group G = Gal(L/K) acts on L canonically and the
morphism L→ LG is the group quotient. Recall that L/K is Galois if
and only if L/G = K.

5. The previous examples generalizes. Indeed consider the opposite category
of commutative rings CRingop and let ρ : G→ Aut(B) for some ring B.
Then the ring of G-invariants

B → BG = {b ∈ B |ρ(g)(b) = b for all g ∈ G}

corresponding to the canonical inclusion BG ↪→ B is the group quotient.

From this point on when we say that a group G acts on an object X if
confusion is not likely to arise we will omit writing the group homomorphism
ρ : G → Aut(X) and just write σ ∈ G when we really mean ρ(σ) ∈ ρ(G) ⊂
Aut(X).

Group quotients of schemes

The group quotient of an affine scheme

In this subsection we will start by showing that if G is a finite group acting
on a ring A, then the canonical map SpecA→ SpecAG is the group quotient
Spec(A)/G. To do this we will first need to explain some notation and concepts
and provide a couple of auxiliary results.
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Localization and G-invariants

Suppose that a group G acts on a ring A, and let S be a multiplicative subset of
A satisfying σ(S) = S for every σ ∈ G. Then for each σ ∈ G we get induced an
automorphism of S−1A by a/s 7→ σ(a)/σ(s), hence we get induced an action
of G on S−1A.

Lemma 1.5.7. Let A be a ring, G a group acting on A such that for all a ∈ A
the orbit {σ(a) | σ ∈ G} is finite. Suppose that S a multiplicative subset of AG.
Then the canonical morphism

S−1AG → (S−1A)G

is an isomorphism.

Proof. The map is clearly injective. For surjectivity suppose that a/t is G-
invariant, so

σ(a/t) = σ(a)/t = a/t

for all σ ∈ G. Or in other words letting

StabG(a) = {σ ∈ G : σ(a) = a}

denote the stabilizer of a, we have for each σ ∈ G/ StabG(a) some sσ ∈ S such
that

sσtσ(a) = sσta.

Since the orbit of a is finite, we have that the group G/ StabG(a) is finite hence
setting

s :=
∏

σ∈G/ StabG(a)

sσ

then sta ∈ AG and sta/t2s 7→ a/t.

G-invariants of pushforwards of structure sheaves

Suppose that X is a ringed space and G is a group acting on X. For any
G-invariant morphism π : X → Y we have that for any open U ⊂ Y , it follows
that σ−1(π−1(U)) = π−1(U) for all σ ∈ G. The proof of the following lemma
is a straightforward verification of the sheaf axioms.

Lemma 1.5.8. Let X be a ringed space with a group G acting on X. Suppose
that π : X → Y is a G-invariant morphism.

The functor π∗OGX given by

π∗OGX(U) = {f ∈ π∗OX(U) | σ#(π−1(U))(f) = f}

is a subsheaf of π∗OX .
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The group quotient of an affine scheme exists in the category of
schemes

If G acts on the ring A then we get a canonical action of G on SpecA and
clearly the canonical morphism π : SpecA→ Spec(AG) is G-invariant.

Proposition 1.5.9. (Notation as above) The morphism π# : OSpec(AG) →
π∗OSpecA induces an isomorphism

OSpec(AG) → π∗OGSpecA

Proof. It is enough to prove this on the distinguished affine opens, which we
have already done in Lemma 1.5.7.

We are now ready to prove that the quotient of an affine scheme with a
finite group always exists.

Proposition 1.5.10 ([Gro71, Exposé V, Prop. 1.1, page 106]). Let A be a ring
and let G be a finite group acting on A. Set X = SpecA and let Y = SpecAG,
and let π : X → Y be the morphism induced by the inclusion AG ↪→ A. The
following statements are true:

(1) A is integral over AG, thus π is an integral morphism.

(2) The morphism π is surjective, the fibers are the orbits of G in the following
sense: If q ∈ X, then the fiber over p = π(q) = q ∩ AG is the set
{σ(q) | σ ∈ G}. Moreover π : X → Y considered as a map of topological
spaces is a quotient map.

(3) For x ∈ X, y = π(x), Gx = StabG(x) the stabilizer of x, then k(x)
is a normal field extension of k(y) and the canonical morphism Gx →
Gal(k(x)/k(y)) is surjective.

(4) (Y, π) is the group quotient X/G in the category of ringed spaces (hence
also in the category of schemes).

Proof. For (1): Let x ∈ A. The polynomial P (Y ) =
∏
σ∈G(Y − σ(x)) is a

monic polynomial with coefficients in AG satisfying P (x) = 0 .
For (2): Surjectivity follows from (1) and the Lying over theorem for

integral extensions. Since integral morphisms are closed and closed surjections
of topological spaces are quotient maps, it follows that π is a quotient map
on the level of topological spaces as claimed. To see what the fibers are first
note that if q ∈ SpecA and if we set p = q ∩AG, then we have p = σ(q) ∩AG
for any σ ∈ G. Now suppose that q, q′ are any two different prime ideals lying
over the same prime ideal p of A. We will show that there is some σ ∈ G
such that σ(q) = q′. Since A is integral over AG we have by [AM69, Corollary
5.9] that there cannot be any inclusion relations between q and q′. Further by
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prime avoidance we will be done if we can show that q′ ⊂ ∪σ∈Gσ(q). Suppose
that this is not the case, then we can find some x ∈ q′ such that x′ /∈ σ(q)
for all σ ∈ G. Set y =

∏
σ∈G σ(x). We have that y ∈ AG ∩ q′ and thus also

y ∈ q ∩ AG, so y ∈ q thus we must have σ(x) ∈ q for some σ ∈ G, but then
x ∈ σ−1(q) which gives the desired contradiction.

For (3): See [Bou64, Ch 5, Sec. 2, n.2, Theorem 2] or [Stacks, Tag 0BRJ].
For (4): Suppose that τ : X → Z is a G-invariant morphism of ringed

spaces. Since τ is G-invariant, we have that τ(σ(x)) = x for all σ ∈ G and
since by (2) the orbit {σ(x) | σ ∈ G} is the fiber of π(x) for each x ∈ X
and π is a quotient map, there exists a unique map of topological spaces
τ̂ : Y → Z such that τ = τ̂ ◦ π as maps of topological spaces. Now to construct
τ̂# : OZ → τ̂∗OY note that since τ is G-invariant the map τ# factors through
the inclusion (τ∗OX)G ↪→ τ∗OX and since (by Proposition 1.5.9) we have

(τ∗OX)G = (τ̂ ◦ π)∗OGX = τ̂∗(π∗OGX) ∼= τ̂∗OY ,

we get our morphism τ̂#. Uniqueness is clear.

Example 1.5.11. (The real affine line) Let A = C[x] and G = Gal(C/R) ∼=
Z/2Z. The group G acts on A by conjugating constants. Then AG = R[x].
Hence we have that π : A1

C → A1
R is the group quotient. This gives us a

new way of computing A1
R. Indeed we know that π is surjective, and we can

compute its image. If a, b ∈ R are any two elements of R with b 6= 0. Then
a point of the form [(x − a)] ∈ A1

C is mapped to [(x − a)] ∈ A1
R, and as

(x − (a + ib))(x − (a − ib)) = x2 − 2ax + (a2 + b2) ∈ R[x] is irreducible we
see that both [(x − (a + ib))] ∈ A1

C and [(x − (a − ib))] ∈ A1
C are mapped to

[(x2 − 2ax+ (a2 + b2))]. Thus we see that the affine real line is obtained from
the affine complex line where complex conjugates have been glued together.

Note that we have also proved that any polynomial with real coefficients
can be factored as a product of real polynomials each of degree at most two,
which is a fact one might have already proved in a first course on calculus.

Example 1.5.12. (The affine cone as a group quotient) Consider the Z/2Z-
action on the ring k[x, y] given by x 7→ −x, y 7→ −y. This induces a group
action on A2

k. It is easy to see that the subring of Z/2Z-invariants is the subring
generated by xy, x2, y2. Furthermore we have a surjective morphism

k[u, v, w]→ k[x, y]Z/2Z

given by
u 7→ x2, v 7→ y2, w 7→ xy

It is clear that the ideal (uv − w2) is contained in the kernel of this map,
moreover since

(0) ⊂ (xy, x2) ⊂ (xy, x2, y2)
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is a chain of prime ideals in k[x, y]Z/2Z we have that k[x, y]Z/2Z is at least two
dimensional, and since (uv − w2) is prime we then conclude that we have an
isomorphism

k[u, v, w]/(uv − w2) ∼= k[x, y]Z/2Z.

Conditions under which the group quotient of schemes exist

Proposition 1.5.13 ([Gro71, Exposé V, Prop. 1.3, page 107]). Let X be a
scheme and G a finite group of automorphisms of X. Suppose that p : X → Y
is an affine G-invariant morphism such that

OY → p∗OGX

is an isomorphism. Then the conclusions of (1),(2),(3) and (4) of Proposition
1.5.10 are still valid.

Proof. Since p is G-invariant it follows that σ−1(p−1(U)) = p−1(U) for every
σ ∈ G and open U ⊂ Y . Further since p is affine, it follows that p−1(SpecB) =
SpecA for some ring A, and from the assumption it then immediately follows
that B = AG. From the aforementioned remarks, assertions (1), (2) and (3)
follow because they can all be checked on open affine covers. Finally (4) follows
by applying (2) to see that p is a quotient map on the level of topological spaces
and use that OY = p∗OGX .

Corollary 1.5.14. Under the conditions of Proposition 1.5.13, for every open
U of Y , U is the quotient of p−1(U) of G.

Proof. The morphism p−1(U)→ U induced by p satisfies the same hypothesis
as p.

For the rest of this section, we shall always assume that X is a scheme over
Z and the group G acts on Z-automorphisms of X.

Corollary 1.5.15. (Under the hypothesis of Proposition 1.5.13). The mor-
phism X → Z is affine (respectively separated) if and only if the induced mor-
phism Y → Z is. If X is of finite type over Z, then the morphism p : X → Y
is finite. Moreover if X is of finite type over Z and Z is locally Noetherian,
then Y → Z is of finite type.

Proof. A clear proof can be found in [Gro71, Exposé V, Corollaire 1.5. , pages
107-108].

Definition 1.5.16 ([Gro71, Exposé V, Définition 1.7.,page 109]). Suppose X
is a scheme and G a finite group acting (on the right) on X. We say that G
acts admissibly if there exists a morphism p : X → Y with the properties of
the morphism p from Proposition 1.5.13.

The following result is part of [Gro71, Exp. V, Prop. 1.8].
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Lemma 1.5.17. Let X be a scheme and suppose G is a finite group acting on
X. The following are equivalent

(1) The scheme X is a union of affine open subsets which are invariant under
G. That is X can be covered by open affine subsets U satisfying σ(U) = U
(as sets) for all σ ∈ G.

(2) For every x ∈ X the orbit {σ(x) | σ ∈ G} is contained in an open affine
subset of X.

Proof. Clearly (1) implies (2). To see that (2) implies (1) it is enough to show
that an arbitrary orbit T is contained in an affine open subscheme of X. For
this purpose note that by assumption we can find some affine open subscheme
V of X such that T ⊂ V . Let W be the open set

W := ∩σ∈Gσ(V ).

For an arbitrary σ ∈ G note that since σ is an automorphism of X and T is an
orbit we have

T = σ(T ) ⊂ σ(V ) ; (1.5.1)
σ(W ) = ∩σ′∈Gσ(σ′(V )) = ∩σ′′∈Gσ′′(V ). (1.5.2)

Hence W contains T , and is G-invariant. If X is separated then W is also
affine as desired and we claim that we can in fact assume that X is separated.
Indeed since W is always separated we only need to show that there is an affine
open subset W ′ of W containing T . To find such a subset W ′ simply observe
that W is an open subset of an affine scheme and apply prime avoidance.

Proposition 1.5.18 ([Gro71, Exposé V, Proposition 1.8, page 109]). Let X
be a scheme and G a finite group acting on X. The group G acts admissibly if
and only if either of the equivalent conditions of Lemma 1.5.17 are satisfied.

Proof. The condition is necessary because if p : X → Y satisfies the hypothesis
of Proposition 1.5.13, then for x ∈ X we can find some affine open subset
V ⊂ Y containing f(x) and we have that the orbit of x is the fiber of f(x)
which is contained in p−1(V ) which is affine by assumption on p.

For sufficiency, suppose X = ∪Xi is a cover of open affines with each Xi

being invariant under G. Then Yi = Xi/G exists, and we have morphisms
π : Xi → Yi satisfying the properties of Proposition 1.5.13. Since pi is quotient
map and by assumption on the cover Xi we have that

p−1
i (pi(Xi ∩Xj)) = Xi ∩Xj ,

it follows that Yij := pi(Xi ∩Xj) is an open subset of Yi. Moreover we have by
Corollary 1.5.14 that Yij is the group quotient of Xi ∩Xj , but so is Yji so we
get induced isomorphisms Yij ∼= Yji. Now it follows from the universal property
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of group quotients that these isomorphisms satisfy the cocycle condition. Thus
we can glue the Yi along the Yij and get a scheme Y . Moreover by construction
we can glue the pi to get a morphism p : X → Y . It is clear that p is an affine
morphism. It is also clear that p is G-invariant since it is on a cover of X and
moreover the morphism

p# : OY → p∗OGX
is an isomorphism because it is on a cover of Y .

Remark 1.5.19. Note that the proof of Proposition 1.5.18 shows that if G is
a finite group acting admissibly on X and U is any G-invariant open subset of
X then the induced map U/G|U → X/G is an open embedding and we have
p−1(U/G|U ) = U .

Corollary 1.5.20. If the finite group G acts admissibly on a scheme X, then
so does any subgroup H of G (thus X/H exists).

Corollary 1.5.21. Suppose X → Z is an affine morphism and G acts on the
Z-automorphisms. Then G acts admissibly on X. If A is the quasi-coherent
sheaf of algebras on Z defining X, then the quotient Y is defined by the sheaf
of OZ-algebras AG of G-invariants of A.

Proof. If X → Z is affine then it is clear that the conditions of Lemma 1.5.17
are satisfied, thus by Proposition 1.5.18 G acts admissibly on X. We can
describe the group quotient X → Y = X/G more explicitly as follows. If
β : X = Spec

Z
(A) → Z, then we have β∗OX ∼= A and for any σ ∈ G, the

morphism
β∗σ

# : β∗OX → β∗(σ∗OX) = β∗OX

canonically induces a morphism

σ#
A : A → A

We define the sheaf of OZ-algebras AG as follows

AG(U) := {f ∈ A(U) | σ#
A(U)(f) = f for all σ ∈ G} = Ker(

∏
σ∈G

(σ#
A − idA)).

The sheaf AG is a subsheaf of A and induces a morphism X → Spec
Z

(AG)
which by construction is the group quotient X/G.

Lemma 1.5.22. Let X,Y be schemes and {Xi} be an open covering of X.
Suppose that we have morphisms fi : Xi → Y and for each pair i, j we have an
open cover {Ui,j,k}k∈K (where K depends on the pair i, j) of Xi ∩Xj such that
the restrictions fi|Ui,j,k = fj |Ui,j,k for all i, j, k. Then the fi glue to a morphism
f : X → Y .
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Proof. This is part of the fact that representable functors are sheaves on the
big Zariski site.

Example 1.5.23. Suppose X is an integral scheme and L is a finite field
extension of k(X) the field of functions of X. Let G = Aut(L/k(X)) be
the Galois group of the extension L/k(X). Then we get a right action of
G ρ : Gop → AutX(X̃) where X̃ → X denotes the normalization of X in L.
Indeed for any affine open U ∼= SpecA of X, then ν−1(U) ∼= SpecB where B
is the integral closure of A in L. For any σ ∈ G we have σ(B) = B , thus we
get induced a morphism of A-algebras Spec(σ) : SpecB → SpecB. It is not
hard to check that these morphisms satisfy the conditions of Lemma 1.5.22
and hence glue to an X-automorphism ρ(σ) : X̃ → X̃.

It is easy to see that G acts admissibly on X̃. Note also that if the extension
L/k(X) is Galois and X is a normal connected scheme, then the normalization
morphism ν : X̃ → X is the group quotient.

Example 1.5.24. Suppose that X = Proj(S) \ V+(I) is a quasi-projective
scheme and let

T = {p1, . . . , pn}

be a finite set in X. Then by assumption we have that I * pi for every pi in
T . Thus by graded prime avoidance we have some homogeneous f ∈ I such
that f /∈ pi for all i, then we have D+(f) ∩ V+(I) = ∅ thus D+(f) ⊂ X and
T ⊂ D+(f). Hence every finite set in a quasiprojective A-scheme is contained
in some affine open subscheme. From this it follows that if G is a finite group
acting on a quasi projective scheme, then the group acts admissibly and so the
group quotient X → X/G exists.

More generally we have that

Proposition 1.5.25. Suppose that f : X → S is a quasi-compact morphism
of schemes. Suppose that T is a finite subset of X and f(T ) is a one point
set (i.e, all elements of T are mapped to the same point in S). If X has an
f -ample invertible sheaf L, then T is contained in an open affine subset of X.
In particular if G is a finite group acting by S-automorphisms on X, then G
acts admissibly.

Proof. Recall that if L is f -ample, then by [GD61, Prop. 4.6.3] or [Stacks,
Tag 01VJ] there exists a quasi-coherent graded OS-algebra A and an open
embedding X → Proj

S
A such that

X Proj
S
A

S

f

◦

commutes.
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Now if T is mapped to the point s ∈ S then for any open neighborhood U
of s we have that T ⊂ f−1(U) is an open subset of X isomorphic to an open
subset of Proj(B) for some ring B and by Example 1.5.24 we get that T is
contained in an affine open subset of X.

In the previous Proposition 1.5.25 we saw an example of a scheme with the
property that finite sets over a given point are contained in an affine subset.
We now follow [Ryd08c] and give this a name:

Definition 1.5.26. Let X/S be a scheme over S. We say that X/S is AF if
the following condition is satisfied:

(AF) Every finite set of points x1, . . . , xn over the same point s ∈ S is
contained in an affine open subset of X.

Remark 1.5.27. If a finite group acts by S-automorphisms on an AF scheme
X/S then G acts admissibly on X.

Remark 1.5.28. Although this notion may not have been given a name until
relatively recently, it has frequently been used as a natural setting to state
and prove problems for a rather long time. An interesting example of this is
Chevalley’s conjecture stating that a nonsingular proper variety is projective if
and only if it is AF. The conjecture was settled affirmatively by Kleiman in
[Kle66].

Remark 3.1.3 of [Ryd08c] mentions that AF morphisms are necessarily
separated and stable under base change. We will now list a few other properties
of AF schemes.

Lemma 1.5.29. We have the following properties of AF morphisms.

(1) If X/S and Y/S are AF then so is X ×S Y → S.

(2) Let Λ be a set and suppose that we have S-morphisms Xλ → S for every
λ ∈ Λ such that Xλ/S is AF for every λ ∈ Λ. Then the induced S-scheme

X :=
∐
λ∈Λ

Xλ → S

is AF.

(3) If X/S is AF and G is a finite group acting on S-automorphisms of X
then the quotient X/G→ S which exists is also AF.
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Proof. For Item (1): note that if z1, . . . , zn are points on Y ×S X lying over
the same point s ∈ S then it is clear that the images of these points in X and Y
respectively lie over the same point s ∈ S. By assumption we have open affine
open subsets V ⊂ Y and U ⊂ X containing these points. Furthermore from
prime avoidance it is clear that if W is an open subset of S then X ×SW/W
and Y ×SW/W are AF (this is a special case of the AF property being stable
under base change ([Ryd08c, Rmk. 3.1.3])). Thus we can reduce to the case
where the scheme S is affine in which case the scheme U ×S V is an affine open
subscheme of Y ×S X containing the points z1, . . . , zn.

For Item (2): It is clearly enough to prove the case of a finite coproduct.
Moreover by induction we reduce to the case X = Y

∐
Z. Let now y1, . . . , yn ∈

Y and z1, . . . , zm ∈ Z be points of X lying over the same point s ∈ S. Since Y
and Z are AF we can find affine opens U ⊂ Y containing all the yi and V ⊂ Z
containing all the zj . The induced map U

∐
V → X = Y

∐
Z is clearly an

open embedding and since a finite coproduct of affine schemes remains affine
we are done.

For Item (3): See [Har16, Lemma 3.1.12.(e)].

Group quotients are well behaved with respect to flat base change:

Proposition 1.5.30 ([Gro71, Exposé V, Proposition 1.9, page 109]). Suppose
G acts admissibly on X, and X/G = Y a scheme over Z. Consider a base
change Z ′ → Z, and set X ′ = X ×Z Z ′, Y ′ = Y ×Z Z ′. Then we get induced
an action of G on X ′ (σ 7→ σ × idZ′ for σ ∈ G). The morphism p′ : X ′ → Y ′

induced by p : X → Y is G-invariant. Further if Z ′ is flat over Z, then
p′ satisfies the hypothesis of Proposition 1.5.13, i.e. OY ′ → p′∗OGX′ is an
isomorphism. Thus G acts admissibly on X ′, and

(X/G)×
Z
Z ′ ∼= (X ×Z Z ′)/G.

Proof. A clear proof is written in [Gro71]. Flatness is necessary for the propo-
sition to be true.

Corollary 1.5.31. Let G,H be two finite groups acting admissibly on S-
automorphisms of X and Y respectively. Then we get induced an admissible
action of G×H on X ×S Y . Moreover if both the quotients X/G and Y/H are
flat over S then the canonical map

X ×
S
Y → (X/G)×

S
(Y/H) (1.5.3)

is the quotient of X ×S Y with the action of G×H.

1.6 Symmetric powers

We start by defining the notion of symmetric powers for sets which will make
it easier to understand the case of schemes coming up next.
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Symmetric powers of sets

Suppose that X is a set and let d be a positive integer. Then for any permu-
tation of d elements σ ∈ Σd we get an automorphism ρ(σ) of X×d given by
(x1, . . . , xd) 7→ (xσ(1), . . . , xσ(d)). Note that since ρ(id) = idX×d and for any
two permutations σ1, σ2 we have ρ(σ1 ◦ σ2) = ρ(σ1) ◦ ρ(σ2), we have a group
homomorphism ρ : Σd → Aut(X×d).

We say that a map f : X×d → S is Σd-invariant if

f ◦ ρ(σ) = f

for all σ ∈ Σd.
Now we can define an equivalence relation on X×d as follows: We say that

(x1, . . . , xd) ∈ X×d is equivalent to (y1, . . . , yd) ∈ X×d if and only if there is
some σ ∈ Σd such that ρ(σ)(x1, . . . , xd) = (y1, . . . , yd). We let Symd(X) be
the quotient of X×d with the aforementioned equivalence relation. We then
have a canonical map π : X×d → Symd(X) and for any Σd-invariant map
f : X×d → S we have a unique map f̂ : Symd(X)→ S satisfying

f = f̂ ◦ π

We call the set Symd(X) the d’th symmetric power of X.

Remark 1.6.1. Note that this construction does not completely resemble the
vector space case, as the tensor product is not a product in the category of
vector spaces. The way to see how the two notions are analogous is through
symmetric monoidal categories, as vector spaces with tensor products and sets
with products are both examples of such categories.

Symmetric tensors of rings

Before introducing symmetric powers of schemes we will first briefly recapitulate
the ring theoretic version. We will only briefly recall the basic definitions and
properties, such as flatness and an explicit description of the generators of the
symmetric tensors without giving any proofs. For a more thorough treatment
of this topic we refer the reader to Chapter 2 of [Har16].

Definition 1.6.2. Let n be a non-negative integer and M a module over a
ring A. The n-fold tensor product of M over A will be denoted as

(M/A)⊗n := M⊗
n
A (1.6.1)

The n-fold tensor product has a natural action of the symmetric group Sn by
permuting the n tensor factors. The corresponding module of invariants

Sn(M/A) :=
(
(M/A)⊗n

)Σn (1.6.2)

is called the n-th symmetric tensors of M over A.
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Remark 1.6.3. If B is an A-algebra, then so are (B/A)⊗n and Sn(B/A).

Lemma 1.6.4. Let A be a ring and let n be a non-negative integer. Suppose
that M is a flat A-module. Then the A-module Sn(M/A) is also flat.

Proof. See [Har16, Theorem 2.1.14].

Definition 1.6.5. Let B be an algebra over a ring A and let n be a non-negative
integer.

1. For every k ∈ {1, 2, . . . , n} the k-th formal n-tensor conjugate of b ∈ B
over A is the pure tensor

ιk(b) := ιnk(b) := 1⊗ . . .⊗ 1⊗ b⊗ 1⊗ . . .⊗ 1 ∈ (B/A)⊗n (1.6.3)

with b at position k and 1 at all other places.

2. For every k ∈ {0, 1, . . . , n} the k-th elementary symmetric n-tensor
ρk(b) := ρnk(b) of b ∈ B over A is the coefficient of xn−k in the polynomial

(x+ b)⊗n =

n∏
i=1

(x+ ιi(b)) ∈ (B[x]/A[x])⊗n ∼= (B/A)⊗n[x] (1.6.4)

It is clearly an element of Sn(B/A).

3. An element of (B/A)⊗n is called an elementary symmetric n-tensor if it
is the k-th elementary symmetric n-tensor of some b ∈ B for some k. If
it is clear from the context, we will omit n.

Remark 1.6.6. If σk is the k-th elementary symmetric polynomial in n-
variables we have

ρnk(b) = σk(ι1(b), . . . , ιn(b)) =
∑

1≤j1<j2<...<jk<n
ιj1(b) · . . . · ιnjk(b). (1.6.5)

Theorem 1.6.7. Let A be a ring and n a non-negative integer. Let B be a
flat A-algebra which is, as an A-module, generated by a subset E ⊂ B.

Then the ring Sn(B/A) of invariants is generated as an A-algebra by the
elementary symmetric n-tensors (Definition 1.6.5) of the e ∈ E.

Proof. See [Har16, Theorem 2.1.18] or [Vac06, Sec. 4.3, Prop. 3].

Observation 1.6.8. Let n1, . . . , nr be positive integers and set N =
∑r

i=1 ni.
Suppose that A is a ring and B is an A-algebra and consider the isomorphism

γ((ni)) : (B/A)⊗N →
r⊗
i=1

(B/A)⊗ni (1.6.6)

33



given by

(b1,1 ⊗ . . .⊗ b1,n1 ⊗ b2,1 ⊗ . . .⊗ b2,n2 ⊗ . . .⊗ br,nr) 7→
r⊗
i=1

(⊗nij=1bi,j).

We can give an explicit description of the image of an elementary symmetric
N -tensor under this map:

For 1 ≤ k ≤ N let Dk be the set of of r-tuples (d1, . . . , dr) satisfying∑r
i=1 di = k and di ≤ ni for all i. Let b ∈ B and consider the sum

∑
(d1,...,dr)∈Dk

ρn1
d1

(b)⊗ ρn2
d2

(b)⊗ . . .⊗ ρnrdr (b) ∈
r⊗
i=1

(B/A)⊗ni (1.6.7)

We claim that this is the image of ρNk (b). Indeed this can be deduced easily by
using the description of elementary symmetric n-tensors in terms of elementary
symmetric functions (1.6.5) and the combinatorial observation that we have
the equality ∑

(d1,...,dr)∈Dk

r∏
i=1

(
ni
di

)
=

(
N

k

)
. (1.6.8)

From this observation and Theorem 1.6.7 we see in particular that if B is
a flat A algebra then the restriction of γ((ni)) to the sub A-algebra SN (B/A)
factors through

⊗r
i=1 Sni(B/A).

Symmetric powers of schemes

The action of Σd on (X/S)d

Let X → S be an S-scheme. We will start by explaining how Σd acts on
(X/S)d := X×SX×S . . .×SX. In the previous section we explicitly described
the maps ρ(σ) and hence how Σd was acting on the d’th self product of a set.
We recall from the aforementioned example that we have pri ◦ ρ(σ) = prσ(i)

and thus the maps qi : X×d → X given by qi := prσ(i) induce the maps ρ(σ).
Thus we can do the same thing for schemes as well, indeed define the maps
qi : (X/S)d → X by qi := prσ(i). Then by the universal property of (fibered)
products we get induced a map ρ(σ) : (X/S)d → (X/S)d satisfying

pri ◦ ρ(σ) = prσ(i)

We claim that ρ(σ) is an automorphism with inverse ρ(σ−1). Indeed we have

pri ◦ ρ(σ−1) ◦ ρ(σ) = prσ−1(i) ◦ ρ(σ) = prσ(σ−1(i)) = pri

for all i, thus by universal property of fibered products, we must have that
ρ(σ−1) ◦ ρ(σ) = id.
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Symmetric powers of schemes: Definition and existence hypothesis

Definition 1.6.9. If the group quotient (X/S)d/Σd (where Σd acts as described
in the preceeding paragraph) exists, then we define the d’th symmetric power
of X to be the quotient

Symd(X/S) := (X/S)d/Σd.

Example 1.6.10. Suppose that f : X → S is an affine morphism, with
A a sheaf of OS-algebras and X = Spec

S
(A). We have that (X/S)d =

Spec
S

(A⊗OS d) and by Corollary 1.5.21 we have that

Symd(X/S) = Spec
S

((A⊗OS d)Σd).

Proposition 1.6.11. Let d be a positive integer. If X/S is AF, then Symd(X/S)
exists.

Proof. By Lemma 1.5.29 we have that (X/S)d is AF, and the group Σd gives
a (right) group action on (X/S)d by S-automorphisms, thus by Proposition
1.5.18 Σd acts admissibly on (X/S)d.

Corollary 1.6.12. Let f : X → S be a quasi-compact morphism of schemes.
If X has an f-ample invertible sheaf, then Symd(X/S) exists. In particular
symmetric powers of quasi-projective schemes exist.

Proof. By Proposition 1.5.25, the scheme X/S is AF.

The following Lemma is essentially [Ryd08c, Remark (3.1.4)].

Lemma 1.6.13. Let f : X → S be an AF scheme. Let {Sα}α be an open
affine cover of S. There exists an open affine cover {Uα,β}α,β of X such that

f(Uα,β) ⊂ Sα

for all α and any subset of d-points of X lying over the same point s ∈ Sα is
contained in some Uα,β. Moreover any such cover {Uα,β}α,β has the property
that

{((Uα,β)/Sα)d}α,β

is an open cover of (X/S)d. Thus

{Symd(Uα,β/Sα)}α,β

is an open affine cover of Symd(X/S).
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Proof. It is clear from the AF property that we can construct an open affine
cover {Uα,β}α,β of X with f(Uα,β) ⊂ Sα such that any d points lying over the
same s ∈ Sα is contained in some Uα,β .

Now if x′ ∈ (X/S)d then pr1(x′), . . . , prd(x
′) are d points of X lying over

the same point s which is contained in some Sα, then we can find some Uα,β
containing pr1(x′), . . . , prd(x

′). We have that

Uα,β ×
Sα
Uα,β ×

Sα
. . . ×

Sα
Uα,β = (Uα,β/S)d

is isomorphic to
pr−1

1 (Uα,β) ∩ . . . ∩ pr−1
d (Uα,β)

which contains x′, hence the (Uα,β/S)d give an open cover of (X/S)d.
The final assertion follows from noting that the affine cover (Uα,β/Sα)d is Σd

invariant and the construction of Symd(X/S) given in the proof of Proposition
1.5.18.

Lemma 1.6.14. Let X → S be a flat morphism of schemes and suppose that
X/S is AF . Then for any non-negative integer n the scheme Symn(X/S) is
flat over S.

Proof. By Lemma 1.6.13 we reduce to the affine case which follows from
Lemma 1.6.4.

Monoidal structure on infinite symmetric powers

In this subsection we work exclusively in the category of S-schemes hence by∏
iXi we will mean the product in this category.

Convention 1.6.15. For non-negative integers m,n, r. We let Σm denote the
symmetric group of bijections [m]→ [m]. We will fix the following convention
to understand certain permutation groups as subgroups of a symmetric groups.

Σm×Σn will be identified with the subgroup of Σm+n that leaves the subset
[m] and [m+ n] \ [m] of [m+ n] invariant. For non-negative integers n1, . . . , nr
this extends inductively to an embedding

Σn1 × . . .× Σnr ↪→ Σn1+...+nr . (1.6.9)

Lemma 1.6.16. Let X → S be a flat AF scheme over S. For positive integers
n1, . . . , nr set N =

∑r
i=1 ni. Recalling the identifications of Convention 1.6.15

we get induced:

1. An isomorphism

r∏
i=1

Symni(X/S) ∼=

(
r∏
i=1

(X/S)ni

)
/

(
r∏
i=1

Σi

)
(1.6.10)
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2. A unique morphism

σ(ni) :
∏

Symni(X/S)→ SymN (X/S)

making the following diagram commutative

∏r
i=1(X/S)ni (X/S)N

∏r
i=1 Symni(X/S) SymN (X/S)

∼=

σ(ni)

(1.6.11)

Proof. For Item 1: Lemma 1.6.14 enables the use of Corollary 1.5.31. By
induction we conclude.

For Item 2: Since the composition of the rightmost vertical morphism
with the top horizontal arrow is clearly

∏r
i=1 Σni invariant, the existence of the

desired morphism σ(ni) follows from Item 1.

For non-negative integers m,n we will sometimes refer to the map σm,n

from Lemma 1.6.16 as addition.

Remark 1.6.17. In the notation of Lemma 1.6.16 if n1 = n2 = . . . = nr = 1
and we identify Sym1(X/S) with X/S then the addition map

σ(ni) :
∏

Sym1(X/S) = (X/S)N → SymN (X/S)

is exactly the quotient map (X/S)N → SymN (X/S).

Lemma 1.6.18. For non-negative integers k,m, n we have:

1. Commutativity of addition:

Symm(X/S)× Symn(X/S) Symm+n(X/S)

Symn(X/S)× Symm(X/S) Symm+n(X/S).

σm,n

swap

σn,m

(1.6.12)

2. Associativity of addition:

Symk(X/S)× Symm(X/S)× Symn(X/S) Symk(X/S)× Symm+n(X/S)

Symk+m(X/S)× Symn(X/S) Symm+n+k(X/S).

Symk(X/S)×σm,n

σk,m×Symn(X/S) σk,m+n

σk+m,n

(1.6.13)
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Proof. For Item 1: Note first that the following diagram is commutative :

(X/S)m × (X/S)n (X/S)n × (X/S)m

Symm(X/S)× Symn(X/S) Symn(X/S)× Symm(X/S).

swap

swap

(1.6.14)

Further we observe that the map (X/S)m × (X/S)n ∼= (X/S)m+n followed by
swapping the m first factors with the n last factors (that is followed by the
permutation cycle i 7→ m+ i (mod m+ n)) coincides with swapping the two
factors of (X/S)m× (X/S)n followed by the isomorphism (X/S)n× (X/S)m ∼=
(X/S)m+n. Since the quotient (X/S)m+n → Symm+n(X/S) is Σm+n invariant,
we conclude from these observations and the defining proeperty of σm,n the
desired commutativity.

For Item 2: A simple diagram chase shows that both compositions coincide
with the morphism σ(k,m,n).

From Lemma E.2.2 it follows that we can apply Construction E.2.3 to the
σm,n maps of Lemma 1.6.18 and make Sym•(X/S) :=

∐
n≥0 Symn(X/S) into

a commutative monoid object in the category of S-schemes. This is how we
will always view Sym•(X/S).

Proposition 1.6.19. Let S be a Noetherian scheme and X → S a flat mor-
phism of finite type and AF. Then the S-scheme Sym•(X/S) is locally of finite
type, flat and AF.

Proof. Follows easily from Lemma 1.6.14 and Lemma 1.5.29.

Remark 1.6.20. There is a non-flat analogue of the scheme Sym•(X/S) called
the scheme of divided powers. The scheme of divided powers and its relation to
zero cycles is extensively studied in [Ryd08b].

1.7 Cycles on Noetherian schemes

In this section we again take our schemes to be separated in order to avoid
potential pathologies.

Basic definitions

For a Noetherian scheme X we follow p.13 of [SV00] and use the following
definitions and notations:

Definition 1.7.1.

1. Cycl(X) denotes the free abelian group generated by the points of (the
Zariski topological space) of X.
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2. Cycleff (X) is the free abelian monoid generated by the points of X.

3. An element of Cycl(X) (resp. of Cycleff (X)) is called a cycle (resp. an
effective cycle) of X.

4. We let supp(Z) denote the closure of the set of points on X which appear
in the cycle Z ∈ Cycl(X) with nonzero coefficients. We consider supp(Z)
as a reduced closed subscheme of X.

5. If Z =
∑
aizi ∈ Cycl(X) is a cycle, then we say that z ∈ X is a point

of Z if z = zi for some i occuring in the formal sum Z with nonzero ai.
The coefficient of a point of a given cycle is sometimes referred to as a
multiplicity .

6. For a closed subscheme Z of X where the points ξi, i = 1, . . . , k are
the generic points of Z (that is the generic points of the irreducible
components of Z) we set

cyclX(Z) :=

k∑
i=1

miξi ∈ Cycleff (X), (1.7.1)

where mi := lengthOZ,ξi
(OZ,ξi). Each number mi is a positive integer

which is called the multiplicity of Z in the point ξi. This construction gives
us a map from the set of closed subschemes of X to the abelian monoid
Cycleff (X) which can be canonically extended to a homomorphism from
the free abelian monoid generated by this set to Cycleff (X). We denote
this homomorphism by cyclX . .

7. A flat morphism p : X → S of Noetherian schemes induces a pullback
map of cycles as follows: For a cycle Z =

∑
nizi on S denote by Zi the

closure of the point zi which we consider as a closed integral subscheme
in S and set

p∗(Z) :=
∑

ni cyclX(Zi×
S
X). (1.7.2)

In this way we get a homomorphism (flat-pullback) p∗ : Cycl(S) →
Cycl(X).

The following lemma is essentially [Ful98, Lemma 1.7.1].

Lemma 1.7.2 ([SV00, Lemma 2.3.1]). Let p : X → S be a flat morphism of
Noetherian schemes.

1. If Z is any closed subscheme of S then p∗(cyclS(Z)) = cyclX(Z ×S X).

2. supp(p∗(Z)) = p−1(supp(Z)). In particular the homomorphism p∗ :
Cycl(S)→ Cycl(X) is injective provided that p is surjective.
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Cycles on algebraic schemes

LetX → Spec(k) be a scheme of finite type over a field k. For any field extension
k′/k base change induces a flat morphism of schemes p : Xk′ → X which by
Item 7 of Definition 1.7.1 gives rise to a homomorphism p∗ : Cycl(X) →
Cycl(Xk′). The image of a cycle Z ∈ Cycl(X) under this homomorphism will
usually be denoted by Z⊗kk′ or Zk′ . For a finite field extension k′/k with Galois
group G = Gal(k′/k), note that if σ ∈ G then we get induced an automorphism
ρ(σ) : Xk′ → Xk′ (in fact G gives a group action on Xk′/ Spec(k)) and this
again induces a group action on Cycl(Xk′), we let Cycl(Xk′)

G denote the
subgroup of cycles invariant under the action of G.

The following lemma is [SV00, Lemma 2.3.2]. Our proof contains several
explanations which are omitted in loc.cit.

Lemma 1.7.3. Let X → Spec(k) be a scheme of finite type over a field k and
let k′/k be a finite normal extension with Galois group G. If Z ′ ∈ Cycl(Xk′)

G

then there is a unique cycle Z ∈ Cycl(X) such that [k′ : k]insepZ ′ = Zk′ .

Proof. The uniqueness of Z follows immediately from Lemma 1.7.2(2). To
prove the existence note that the group Cycl(Xk′)

G is generated by cycles
of the form Z ′ =

∑
τ∈G/StabG(z′) τ(z′), where z′ is a point of Xk′ . Let z be

the image of z′ in X and let Z be the closure of z in X. Consider now the
commutative diagram where each square is a pullback.

Z ′×Spec k Spec k(z) Spec(k(z))

Z ′ := Spec(k′)×Spec(k) Z Z

Xk′ X

Spec(k′) Spec(k)

/ /

The points of Z ′×Spec(k) Spec(k(z)) correspond precisely to the irreducible
components of Z ′, moreover by [Bou64, Ch 5, Sec. 2, n.2, Theorem 2] it follows
that G acts transitively on the points of Z ′×Spec(k) Spec(k(z)), hence it follows
that all the multiplicities appearing in cyclXk′ (Z

′) are the same and equal to
lengthOZ′,z′ (OZ′,z′). Let l denote the number of irreducible components of Z ′

or equivalently the number of prime ideals of k(z)⊗k k′. From Lemma A.2.1 it
follows that

lengthOZ′,z′ (OZ′,z′) =
dimk(z)(k(z)⊗k k′)
l · [k(z′) : k(z)]

=
[k′ : k]

l · [k(z′) : k(z)]
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Since the map ϕ : k′sep ⊗k k(z) → k′ ⊗k k(z) induces a universal homeo-
morphism it is clear that for any prime ideal p of k(z)⊗k k′ with q = ϕ−1(p)
we have that the extension k(q)/k(z) is separable since k′sep/k is so ([GD67,
Cor. (4.3.7)]), and since k(z′) ∼= k(p)/k(q) is purely inseparable it follows from
Lemma 1.4.19 that we must have k(q) ∼= k(z′)sep. Thus we get an isomorphism
of k(z)-algebras

k(z)⊗k k′sep
∼= k(z′)⊕lsep

hence l =
[k′:k]sep

[k(z′):k(z)]sep
. Thus

lengthOZ′,z′ (OZ′,z′) =
[k′ : k]insep

[k(z′) : k(z)]insep

Thus the cycle

Z = [k′ : k]insepz/ length(OZ′,z′) = [k(z′) : k(z)]insepz

has the required property.

Corollary 1.7.4 ([SV00, Corollary 2.3.3]). In the assumptions and notations
of Lemma 1.7.3 denote by p the exponential characteristic of the field k. Then
the homomorphism

Cycl(X)[1/p]→ (Cycl(Xk′)[1/p])
G

is an isomorphism.

Example 1.7.5. Consider the scheme X = Spec(R[x, y]/(x2 + y2 + 1)) and
the base change XC = Spec(C[x, y]/(x2 + y2 + 1)). Consider the two points
p1 = (x− i, y), p2 = (x+ i, y) on XC and let Z ′ be the cycle

Z ′ = p1 + p2

Note that this is invariant under the action of Gal(C/R) on Cycl(XC). Let p
be the image of p1 in X, that is p = (x2 + 1, y) and set Z = p. Then

Z ⊗R C = cyclXC(V (x2 + 1, y)) = p1 + p2 = Z ′

Example 1.7.6. Consider the one point scheme X = Spec(F2(t)[x]/(x2 − t))
and the base change X ′ = XF2(

√
t). Note that the latter scheme is also a

one point scheme. Let p respectively p′ denote the point of X respectively
of X ′. Set Z ′ = p′ ∈ Cycl(X ′). A straightforward computation shows that
G = Gal(F2(

√
t)/F2(t)) = 0 hence the cycle Z ′ is obviously invariant under the

action of G. Set Z = p ∈ Cycl(X) then one easily sees that Z ⊗F2(t) F2(
√
t) =

2Z ′ and thus Z is the unique cycle of Lemma 1.7.3.
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Let X → Spec(k) be a scheme of finite type over a field k. As stated on
p.14 of [SV00] we have a direct sum decomposition Cycl(X) =

∐
Cycl(X, r)

where Cycl(X, r) is a subgroup of Cycl(X) generated by points of dimension
r (meaning that their closure has dimension r). Furthermore since flatness
of relative dimension 0 is stable under base change it follows that for a field
extension k′/k the homomorphism

Cycl(X)→ Cycl(Xk′)

preserves this decomposition.
The following Proposition tells us something about how multiplicities change

when we pass to a larger field.

Proposition 1.7.7. Let k be a field of exponential characteristic p and X an
integral scheme of finite type over k. Let K denote the function field of X. For
a field extension k′/k, denote by {X ′α}α the set of irreducible components of
X ′ := Spec(k′)×Spec(k)X and x′α the generic point of Xα.

1. If k′′ is any field extension of k′ we set X ′′ := Spec(k′′)×Spec(k)X, {X ′′β}β
the set of irreducible components of X ′′ where x′′β denotes the generic
point of X ′′β . If x

′′
β lies over x′α then we have

length(Ox′′β ) = length(Ox′α) · length(OZ′′,x′′β ), (1.7.3)

where Z ′′ := Spec(k′′)×Spec(k′)X
′
red. In particular if k′′ is a separable

extension of k′ then we have length(Ox′′β ) = length(Ox′α).

2. The numbers length(Ox′α) are powers of p.

3. If the field k′ is perfect then the numbers length(Ox′α) are all equal and
only depend on the field extension K/k (and not on the considered field ex-
tension k′/k with k′ perfect). In addition there exists a finite purely insepa-
rable k1/k such that if x1 is the generic point of X1 = Spec(k1)×Spec(k)X
(this is an irreducible scheme) then length(Ox′α) = length(Ox1) for every
α.

Proof. See [GD67, Prop. (4.7.3)].

Proper pushforward

The following definition is taken from the last paragraph of p.14 of [SV00].

Definition 1.7.8. Let S be a Noetherian scheme and p : X → S be a proper
morphism of finite type. For any cycle Z =

∑
nizi ∈ Cycl(X) set

p∗(Z) =
∑

nimip(zi)

where mi is the degree of the field extension kzi/kp(zi) if this extension is finite
and zero otherwise.
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The proof of the following proposition is similar to Proposition 1.7 of [Ful98]

Proposition 1.7.9 ([SV00, Proposition 2.3.4]). Consider a pull-back square
of morphisms of finite type of Noetherian schemes

X̃ X

S̃ S

p̃

fX

p

f

in which f is flat and p is proper. Then for any cycle Z ∈ Cycl(X) we have

f∗(p∗(Z)) = p̃∗(f
∗
X(Z)).

Cycles of codimension one

Proposition 1.7.10. Let X be a Noetherian scheme and W =
∑

i aizi ∈
Cycleff (X) such that the points zi are of codimension 1 in X. Suppose that X
is regular at the points zi. Then there is exactly one closed subscheme Z of X
satisfying the following two properties:

1. cyclX(Z) = W and ;

2. Z has no embedded components.

Proof. Let us first prove existence of Z. For each i let Ii denote the ideal
sheaves of the integral closed subscheme {zi} and let I be the ideal sheaf defined
by I = ∩iI(ai)

i where I(ai)
i denotes the ai’th symbolic power (See [Stacks, Tag

05G9] and [AM69, Chap.4, Exercise 13]). Let Z be the closed subscheme cut
out by I. It is clear that the associated points of Z are exactly the points zi
hence we have no embedded components, and moreover since a prime ideal p of
a ring A has the property that pnAp = p(n)Ap and OX,zi is a discrete valuation
ring it follows that we must have cyclX(Z) = W .

Let Z ′ be any other closed subscheme satisfying properties 1 and 2. In
order to show that Z ′ = Z we may assume that X is an affine scheme say
X = Spec(A) and that Z ′ is cut out by an ideal I ′ of A. Since I ′ has no
embedded points we have a primary decomposition of I ′ of the form I ′ = ∩qi.
By [AM69, Prop. 4.9] we have I ′ ·OX,zi = qiOX,Zi and the preimage of this ideal
in A is exactly the ideal qi. Now since OX,zi is a discrete valuation ring and Z ′

satisfies 1 we see that qiOX,zi coincides with the ai’th power of the maximal
ideal of OX,zi and since this holds for all i we conclude that Z = Z ′.

Corollary 1.7.11. Let X be a normal Noetherian scheme and W =
∑

i aizi ∈
Cycleff (X) such that the points zi are of codimension 1 in X. Suppose that
every point x ∈ X has a neighborhood Ux and a section f ∈ OX(Ux) such that
we have the equality

cyclUx(V (f)) =
∑
zi∈Ux

aizi. (1.7.4)
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Then there is exactly one closed subscheme Z of X with no embedded components
such that cyclX(Z) = W and this closed subscheme Z is necessarily an effective
Cartier divisor on X.

In particular if all the local rings OX,x of X are unique factorization do-
mains9 then any effective Weil divisor on X is of the form cyclX(Z) for a
unique effective Cartier divisor Z on X.

Proof. Since normal schemes are regular in codimension one we have by Propo-
sition 1.7.10 a unique closed subscheme Z of X with no embedded components
such that cyclX(Z) = W . To see that this is an effective Cartier divisor note
first that

cyclUx(V (f)) = cyclUx(Z ∩ Ux), (1.7.5)

and we may shrink the Ux so that they may be taken to be affine integral
schemes. By [Stacks, Tag 031T] it follows then that V (f) does not have any
embedded components hence we conclude that V (f) = Z∩Ux, which completes
the proof.

The last statement follows easily from the fact that every prime ideal of
height 1 in a Noetherian unique factorization domain is necessarily principal
([Stacks, Tag 0AFT]).

Lemma 1.7.12. Let X be a smooth equidimensional algebraic scheme of
dimension r over a field k and Z a closed subscheme of pure dimension r − 1.
If there is a field extension K/k such that the base change ZK is an effective
Cartier divisor on XK then Z is an effective Cartier divisor on X.

Proof. If ZK is an effective Cartier divisor of XK then since XK is smooth the
scheme ZK is necessarily Cohen-Macaulay. Thus by [Stacks, Tag 045U] it follows
that Z is also a Cohen-Macaulay scheme. Hence Z has no embedded components
and all generic points of Z are of codimension 1 in X. By Corollary 1.7.11 we
conclude that Z is an effective Cartier divisor on X.

1.8 Limits of schemes

When attacking a problem concerning a Noetherian scheme we can sometimes
instead work with its normalization. The problem is however that in general
the normalization of a Noetherian scheme need not be Noetherian, and even if
it is the normalization morphism might not be finite, see for instance [Nag62,
Example 5, Appendix A.1, page 207] and [Nag62, Example 3, Appendix A.1,
page 203] respectively. The theory of directed limits of schemes provides
tools to overcome such problems by means of "approximating" our schemes or
morphisms by ones which are better behaved. Our main reference is [Stacks,
Tag 01YT] which again is largely based on [GD67].

9This is the case if X is for instance a regular scheme ([Stacks, Tag 0AG0]).
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Setup

Definition 1.8.1. Let I be a set and let ≤ be a binary relation on I.

1. We say ≤ is a preorder if it is transitive (if i ≤ j and j ≤ k then i ≤ k)
and reflexive (i ≤ i for all i ∈ I).

2. A preordered set is a set endowed with a preorder.

3. A directed set is a preordered set (I,≤) such that I is not empty and
such that ∀i, j ∈ I , there exists k ∈ I with i ≤ k, j ≤ k.

It is customary to drop the ≤ from the notation when talking about
preordered sets, that is, one speaks of the preordered set I rather than of the
preordered set (I,≤). Given a preordered set I the symbol ≥ is defined by the
rule i ≥ j ⇔ j ≤ i for all i, j ∈ I.

Given a preordered set I we can construct a category: the objects are the
elements of I, there is exactly one morphism i → i′ if i ≤ i′, and otherwise
none.

Definition 1.8.2. Let I be a preordered set considered as a category I and C
any category.

1. A system (of C ) over I is a diagram M : I → C.

2. An inverse system (of C) over I is a diagram M : Iop → C.

For short we will often write (Mi, fii′) to denote an (inverse) system, where
Mi := M(i) and fii′ = M(i→ i′). We will call the fii′ transition maps.

Lemma 1.8.3 ([Stacks, Tag 01YW]). Let I be a directed set. Let (Si, fii′) be
an inverse system of schemes over I. If all the schemes Si are affine, then
the limit S = limi Si exists in the category of schemes. In fact S is affine and
S = Spec(colimiRi) with Ri = Γ(Si,OSi).

Lemma 1.8.4 ([Stacks, Tag 01YX]). Let I be a directed set. Let (Si, fii′) be
an inverse system of schemes over I. If all the morphisms fii′ : Si → Si′ are
affine, then the limit S = limi Si exists in the category of schemes. Moreover,

1. each of the morphisms fi : S → Si is affine,

2. for an element 0 ∈ I and any open subscheme U0 ⊂ S0 we have

f−1
0 (U0) = lim

i≥0
f−1
i0 (U0).

in the category of schemes.
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Descending properties

The following Lemma is [Stacks, Tag 01YZ].

Lemma 1.8.5. Let S = limSi be the limit of a directed inverse system of
schemes with affine transition morphisms. For some 0 ∈ I suppose that T is a
scheme over S0. Then

T ×
S0

S = lim
i≥0

T ×
S0

Si. (1.8.1)

Proof. Limits commute with fiber products.

Lemma 1.8.6. If all the schemes Si are nonempty and quasi-compact, then
the limit S = limi Si is nonempty.

Proof. This is [Stacks, Tag 01Z2].

Lemma 1.8.7. Let S = limSi be the limit of a directed inverse system of
schemes with affine transition morphisms. Suppose that all the schemes Si are
quasi-compact and quasi-separated. Then given any quasi-compact open V ⊂ S
there is some i ∈ I and a quasi-compact open Vi ⊂ Si such that V = f−1

i (Vi)
where fi : S → Si is the projection from the limit.

Proof. See [Stacks, Tag 01Z4].

Nagata schemes

We briefly recall that a domain R is according to [GD67, Ch. 0, (23.1.1)]
called Japanese if the integral closure of R in any finite extension of its fraction
field is finite over R. A ring R is called universally Japanese if for any finite
type ring map R → S with S a domain S is Japanese. A ring R is called
Nagata if it is Noetherian and R/p is Japanese for every prime p of R. One
has that a ring R is Nagata if and only if every finite type R-algebra is Nagata
if and only if R is Noetherian and universally Japanese ([Stacks, Tag 0334]). A
scheme X is Nagata if for any affine open U of X the ring OX(U) is Nagata.
The normalization of a Nagata scheme X is necessarily finite over X ([Stacks,
Tag 035S]) and [Stacks, Tag 0AVK] tells us that if X is an integral Nagata
scheme then the normalization of X in a finite field extension of its function
field is finite over X. Finally if R is either Z or a field and X → Spec(R) is a
morphism locally of finite type, then [Stacks, Tag 035B] yields that X must
necessarily be Nagata. [Stacks, Tag 01ZA] tells us now that any quasi-compact
and quasi-separated scheme is a directed limit of Nagata schemes with affine
transition maps, however this fact will not be used in this thesis.

46

https://stacks.math.columbia.edu/tag/01YZ
https://stacks.math.columbia.edu/tag/01Z2
https://stacks.math.columbia.edu/tag/01Z4
https://stacks.math.columbia.edu/tag/0334
https://stacks.math.columbia.edu/tag/035S
https://stacks.math.columbia.edu/tag/0AVK
https://stacks.math.columbia.edu/tag/035B
https://stacks.math.columbia.edu/tag/01ZA


Limits and morphisms of finite presentation

Proposition 1.8.8. Let f : X → Y be a morphism of schemes. The following
are equivalent:

1. The morphism f is locally of finite presentation.

2. For any directed set Λ, and any inverse system (Tλ, fλλ′) of Y -schemes
over Λ with each fλλ′ affine and every Tλ quasi-compact and quasi-
separated as a scheme, we have

MorY (lim
λ
Tλ, X) = colimλ MorY (Tλ, X)

Proof. See [GD67, Proposition 8.14.2] or [Stacks, Tag 01ZC]

Approximating integral morphisms by finite morphisms

Lemma 1.8.9. Let X → S be an integral morphism with S quasi-compact and
quasi-separated. Then X = limXi with Xi → S finite and of finite presentation.

Proof. [Stacks, Tag 09YZ]

Lemma 1.8.10. Let S be an integral Noetherian scheme with function field
K and let ν : Sn → S denote its normalization. The following statements hold
true:

1. The normalization ν : Sn → S can be expressed as a directed limit

Sn = lim
λ
Sλ (1.8.2)

with pλ : Sn → Sλ integral and surjective and Sλ → S finite. In particular
all the Sλ are integral Noetherian schemes with function field K.

2. Given s′ ∈ Sn then in the notation of (1) there exists some λ and some
s′λ ∈ Sλ such that s′ is the only point lying over s′λ or in other words

p−1
λ ({s′λ}) = {s′} (1.8.3)

Proof. The first claim follows almost immediately from [Stacks, Tag 0817] (see
also Lemma 1.8.9).

For the second claim set s = ν(s′) and let Spec(A) be an open affine of S
containing the point s, then clearly s′ ∈ Sn×S Spec(A) = Spec(A) where A
denotes the normalization of the ring A. By [HS06, Lemma 4.8.4] there exists
a finitely generated A algebra C with generators say r1, . . . , rn ∈ C such that
C ⊂ A and there exists an s′λ ∈ Spec(C) such that s′ is the only point of
Spec(A) lying over s′λ. By construction of the schemes occuring in the limit of
(1) it is thus enough to construct a finite quasi-coherent OS-sub-algebra C of
ν∗OSn such that C = Γ(Spec(A), C). This is done mutatis mutandis as in the
proof of [Stacks, Tag 01PF].
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Chapter 2

Relative Cycles

In this chapter we will familiarize ourselves with relative cycles as developed in
[SV00]. In doing so we will follow op.cit. closely, sometimes providing more
explanations and on other occasions omit results and/or proofs that can be
found there.

Towards the end of the chapter we briefly recall Kollár’s theory of families
of well defined proper algebraic cycles and explain how they relate to Suslin-
Voevodsky’s relative cycles. Furthermore we will also study the locus where
a relative cycle becomes effective and vanishes, something which as far as we
know has not been considered in the literature.

In this chapter every scheme is assumed to be separated.

2.1 Relative cycles

Fat points

Definition 2.1.1 ([SV00, Def.3.1.1]). Let S be a Noetherian scheme, k a
field and x : Spec(k) → S be a k-point of S. A fat point over x is a triple
(x0, x1, R), where R is a discrete valuation ring and x0 : Spec(k)→ Spec(R),
x1 : Spec(R)→ S are morphisms such that

1. x = x1 ◦ x0

2. The image of x0 is the closed point of Spec(R).

3. x1 takes the generic point of Spec(R) to a generic point of S.

Usually we will abbreviate the notation (x0, x1, R) to (x0, x1).
The following algebraic lemma shows us how to cook up fat points over

suitably large fields:

Lemma 2.1.2 ([GD61, (7.1.7)]). Suppose (A,m) is a local Noetherian integral
domain which is not a field, and denote by K the field of fractions of A, let L
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be any finite field extension of K. Then there exists a discrete valuation ring R
with field of fractions L such that R dominates A.

Proof. The proof we give here is a rather faithful translation of the French
proof.

We only prove the case L = K. Let x1, . . . , xn be non-zero generators of
the maximal ideal m of A. Consider the subring

B := A[x2/x1, . . . , xn/x1] ⊂ K.

It is clear that B is Noetherian. Note also that the extended ideal mB = (x1)B
is principal. Let p be a minimal prime containing x1B, then the local ring

Bp

is a one-dimensional Noetherian ring. It is clear that Bp dominates A. Let C
be the integral closure of Bp in K, then by the Krull-Akizuki theorem we have
that C is Noetherian([Stacks, Tag 00PG]) and since C is integral over Bp it
follows that C is one-dimensional. Now let η be any maximal ideal of C, then
R = Cη is a DVR dominating Bp hence also A.

Corollary 2.1.3 ([SV00, Lemma.3.1.4]). Let S be a Noetherian scheme, η
a generic point of S and s be a point in the closure of η. Let further L be
an extension of finite type of the field of functions on S in η. Then there is
a discrete valuation ring R and a morphism f : Spec(R) → S such that the
following conditions hold:

1. f maps the generic point of Spec(R) to η and the field of functions of R
is isomorphic to L over k(η).

2. f maps the closed point of Spec(R) to s.

Example 2.1.4. Let k be a field and consider the scheme Ank and let m be
the origin m = (x1, . . . , xn) ∈ Spec(k[x1, . . . , xn]) = Ank . In this case we can
explicitly produce a map ϕ : k[x1, . . . , xn]→ R where R is a discrete valuation
ring such that Spec(ϕ) takes the closed point of Spec(R) to m and the generic
point to the generic point of Ank . The construction of R is as follows: Consider
the ring

B := k[x1, . . . , xn, u2, . . . , un]/(x1u2 − x2, x1u3 − x3, . . . , x1un − xn).

Since B/x1B = k[u2, . . . , un] it follows that x1B is a prime ideal of B. Fur-
thermore it is easily checked that B is an integral domain. Set R = B(x1B).
By Krull’s Hauptidealsatz it follows that dimR = 1, and since this is a local
Noetherian domain of dimension one where the maximal ideal is principal,
it follows that R is a discrete valuation ring. We claim that the canonical
map k[x1, . . . , xn] → B is an injection. If we have some nonzero polynomial
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f ∈ k[x1, . . . , xn] such that the image of f in B is zero, then we have polynomials
g2, . . . , gn ∈ k[x1, . . . , xn, u2, . . . , un] such that

g :=

n∑
i=2

gi(x1ui − xi) = f.

By possibly passing to the algebraic closure of k, we can find a tuple (a1, . . . , an) ∈
k̄n with a1 6= 0 such that f(a1, . . . , an) 6= 0. But then g(a1, . . . , an,

a2
a1
, a3
a1
, . . . , ana1

) =
0, which gives a contradiction. Hence the morphism ϕ : k[x1, . . . , xn]→ R is
an injection, thus the generic point of Spec(R) lies over the generic point of Ank .
Furthermore as ϕ−1(xR) ⊃ m and 1 /∈ ϕ−1(xR) it follows that ϕ−1(xR) = m
thus the closed point of Spec(R) is mapped to the origin of Ank .

The following example illustrates that there does not always exist a fat
point over a given k-point.

Example 2.1.5. If S is any Noetherian scheme with normalization Sn → S
such that there is a point s ∈ S with the property that all points s′ ∈ Sn lying
over s induce non-trivial extensions of residue fields k(s) → k(s′). Then it
follows easily from Proposition 1.3.11 that there cannot be a fat point over the
point Spec(k(s))→ S.

For a concrete example of such a scheme S in characteristic 0 consider the
plane curve S = V (x2 + y2 − y3) ⊂ A2

R.
1The ring homomorphism

R[x, y]/(x2 + y2 − y3)→ R[T (T 2 + 1), T 2 + 1]

given by x 7→ T (T 2 + 1), y 7→ (T 2 + 1) is in fact an isomorphism and the
normalization of the latter ring is obviously R[T ]. Hence the normalization is
the induced map S′ = A1

R → S. Moreover the only point of S′ lying over the
origin s = (x, y) ∈ C is s′ = (T 2 + 1) ∈ S′ whose residue field is C while s has
residue field R.

Lemma 2.1.6 ([GD67, (2.8.5)]). Suppose that Y is a regular irreducible locally
Noetherian scheme of dimension 1 with generic point η, and suppose f : X →
Y is a morphism. Let Xη denote the generic fiber of the morphism f and
i : Xη → X be the projection. Then for any closed subscheme Z ′ of Xη there
exists a unique closed subscheme Z ′ of X which is flat over Y and satisfies the
equality i−1(Z ′) = Z ′.

Proof. We only explain how the closed subscheme Z ′ is constructed following
loc.cit. If I ′ is the ideal sheaf of Z ′ then

I = Ker(OX
i#→ i∗OXη → i∗(OXη/I ′))

1This example has been given on mathoverflow by J. Starr.
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is the ideal sheaf of Z ′, and we have I ′ = i∗(I)OXη . The closed subscheme Z ′
can also be described as the scheme theoretic image of the composition

Z ′ Xη X/
i

which has as underlying set the closure of the set theoretic image of the
aforementioned composition, justifying the notation Z ′.

Corollary 2.1.7 ([SV00, Lemma 3.1.2]). Let S be a Noetherian scheme, X → S
be a scheme over S and Z be a closed subscheme in X. Let further R be a
discrete valuation ring and f : Spec(R)→ S be a morphism. Then there exists
a unique closed subscheme φf (Z) in Z ×S Spec(R) such that:

1. The closed embedding φf (Z) → Z ×S Spec(R) is an isomorphism over
the generic point of Spec(R).

2. φf (Z) is flat over Spec(R).

Proof. In Lemma 2.1.6 replace X with Z ×S Spec(R), Y with Spec(R) and Z ′

with the generic fiber of Z ×S Spec(R)→ Spec(R), then φf (Z) is the scheme Z ′
which is the scheme theoretic image of the generic fiber of the aforementioned
map.

Lemma 2.1.8. Let S be a Noetherian scheme, X → S be a scheme over S
and Z be a closed subscheme in X. Assume that there exists a blow-up S′ → S
of S with center S0 satisfying the two following properties:

1. S′ → S induces a bijection of the generic points of S′ and S.

2. The strict transform of Z denoted Z̃ is flat over S′.

Then for any discrete valuation ring R and morphism f : Spec(R)→ S mapping
the generic point of Spec(R) to a point in S \ S0, the map f : Spec(R) → S
factors uniquely through S′ and we have the equality

φf (Z) = Spec(R)×
S′
Z̃

Proof. It follows from the valuative criterion of properness ([GD61, (7.3.8)])
that f : Spec(R)→ S factors through S′.

52



Consider now the commutative diagram where each square is a pullback
diagram

Spec(R)×S′ Z̃ Z̃

Spec(R)×S Z S′×S Z Z

Spec(R)×S X S′×S X X

Spec(R) S′ S

/ /

/ / /

To prove the desired equality it is enough to check that Spec(R)×S′ Z̃ satisfies
(1) and (2) of Corollary 2.1.7. Since Z̃ → S′ is flat by assumption it follows
that Spec(R)×S′ Z̃ → Spec(R) is flat as well. Further we have by Lemma 1.2.2
that the strict transform Z̃ → S′×S Z is an isomorphism over S′×S(S \ S0)
and since the generic point of Spec(R) is mapped to the aforementioned open
set it follows that Spec(R)×S′ Z̃ → Spec(R)×S Z is an isomorphism over the
generic point of Spec(R).

Following [SV00, p.16] we use the following notation:

Notation 2.1.9. Let X → S be a scheme of finite type over a Noetherian
scheme S and Z be a closed subscheme of X. If (x0, x1) is a fat point over a k-
point x of S we denote by (x0, x1)∗(Z/S) the cycle on X ×S Spec(k) associated
with the closed subscheme φx1(Z)×Spec(R) Spec(k) or in other words

(x0, x1)∗(Z/S) := cyclX ×S Spec(k)(φx1(Z) ×
Spec(R)

Spec(k)).

If Z =
∑
mizi is any cycle on X we denote by (x0, x1)∗(Z) the cycle∑

mi(x0, x1)∗(Zi) where Zi is the closure of the point zi (considered as a
reduced closed subscheme of X) .

Example 2.1.10. Let S be a regular curve, X → S any morphism and
let Z be a closed integral subscheme of X such that the generic point of Z
lies over a generic point of S. Then it follows that Z is flat over S, thus if
f : Spec(R) → S is a morphism from the spectrum of a discrete valuation
ring, then φf (Z) = Z ×S Spec(R). In particular if x : Spec(k) → S is any
k-point of S and (x0, x1) is any fat point over x, then we have (x0, x1)∗(Z) =
cyclX ×S Spec(k)(Z ×S Spec(k)) .

Relative cycles

Definition 2.1.11 (Relative cycles, [SV00, Def.3.1.3]). Let S be a Noetherian
scheme and X → S be a scheme of finite type over S. A relative cycle on X
over S is a cycle Z =

∑
mizi on X satisfying the following requirements:
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1. The points zi lie over generic points of S.

2. For any field k, k-point x of S and a pair of fat points (x0, x1), (y0, y1) of
S over x one has:

(x0, x1)∗(Z) = (y0, y1)∗(Z)

We say that Z =
∑
nizi is a relative cycle of dimension r if each point zi has

dimension r in its fiber over S. We denote the corresponding abelian groups
by Cycl(X/S, r).

We say that Z is an equidimensional relative cycle of dimension r if Supp(Z)
is equidimensional of dimension r over S which by Corollary 1.1.19 is equivalent
to requiring that Supp(zi) is equidimensional of dimension r over S for each of
the points zi occuring in the sum. We denote the corresponding abelian groups
by Cyclequi(X/S, r) .

We say that Z is a proper relative cycle if Supp(Z) is proper over S. We de-
note the corresponding abelian groups by PropCycl(X/S, r) and PropCyclequi(X/S, r)
.

We will also use the notations Cycleff (X/S, r), PropCycleff (X/S, r) etc.
for the corresponding abelian monoids of effective relative cycles.

Remark 2.1.12 ([SV00, p.17]). It is clear from the definition that Z ∈
Cycl(X/S, r) if and only if Z ∈ Cycl(Xred/Sred, r).

For future reference we now make the following useful observation concerning
2.1.11.

Lemma 2.1.13. Let S be a Noetherian scheme and f : X → S be a scheme of
finite type over S. Let z be a point of X lying over a generic point of S and let
Z be the closure of z in X (with induced reduced subscheme structure). Then the
closure of z in the fiber of f(z) is isomorphic to Z ×S Spec(k(f(z))). In particu-
lar a point z of X has dimension r in its fibre if and only if Z ×S Spec(k(f(z)))
is an r-dimensional scheme.

Proof. Let Sz denote the irreducible component of S with generic point f(z).
It is straightforward to see that

Z ×
S

Spec(k(f(z))) ∼= Z ×
Sz

Spec(k(f(z)))

The latter can easily be seen to be an integral scheme by reducing to the
affine case. It is furthermore straightforward to see that the underlying set of
Z ×S Spec(k(f(z))) and that of the closure of z in X ×S Spec(k(f(z))) coincide,
thus the closure of z in X ×S Spec k(f(z)) and Z ×S Spec k(f(z)) are reduced
subschemes with the same underlying sets, thus they are equal.

Corollary 2.1.14. Let S be a Noetherian scheme and f : X → S be a scheme
of finite type over S. Let z be a point of X lying over a generic point of
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S with dimension r in its fiber. Let Z denote the closure of z in X. Let
SpecL → Spec k(f(z)) be a morphism from any field L. Then the scheme
Spec(L)×S Z is equidimensional of dimension r.

Example 2.1.15. Suppose that S is a Noetherian scheme and f : X → S is
a morphism of finite type. Of course if a point z of X has dimension r in its
fiber, this does not mean that the closure of the point in X is of dimension r.
Consider for instance S = Spec(Z) and let X = Spec(Z[x]) then the canonical
inclusion of rings gives us the map X → S. Consider the point (x) ∈ X.
The closure of (x) with induced reduced subscheme structure is isomorphic
to Spec(Z) hence the closure of (x) is a one dimensional scheme, however the
closure of (x) in its fiber is isomorphic to Spec(Q) which is zero dimensional.

Before moving on we also show how we can find fat points to tell different
cycles apart.

Lemma 2.1.16. Let S be a Noetherian scheme and X → S be a scheme of
finite type over S. Suppose that Z =

∑
aizi ∈ Cycl(X/S, r) is such that all the

zi lie over the same generic point η of S. Then there exists a fat point (x0, x1)
over the canonical point Spec k(η)→ S such that

(x0, x1)∗(Z) =
∑

aizi ∈ Cycl(X ×S Spec k(η))

Proof. Let R = k(η)[t](t) where t is an independent variable, then R is a
discrete valuation ring containing the field k(η) with residue field k(η) thus we
have canonical maps Spec k(η)→ SpecR→ Spec k(η) and so in turn canonical
maps

Spec k(η)
x0→ SpecR

x1→ S

it is clear that (x0, x1) has the desired property.

Corollary 2.1.17. Let S be a Noetherian scheme, X → S be a scheme of
finite type over S. If Z1 =

∑
aizi, Z2 =

∑
bjzj are two different cycles in

Cycl(X/S, r). Then there exists a field k and a k-point x : Spec(k)→ S and a
fat point (x0, x1) over x such that

(x0, x1)∗(Z1) 6= (x0, x1)∗Z2

Proof. Suppose that f : Spec(R) → S is a morphism from the spectrum of
a discrete valuation ring mapping the generic point of Spec(R) to a generic
point ηf of S. If Z is a closed subscheme of X disjoint from the fiber of ηf
then since flat morphisms of finite type are open, it follows that φf (Z) = ∅.
Hence by Corollary 2.1.3 we may assume that any generic point of S which is
in the image of Z1 is also in the image of Z2, in fact we can assume that all
the points of Z1 and Z2 lie over the same generic point η of S. By Lemma
2.1.16 we are now done.
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The following result is [SV00, Cor.3.1.6]. We shall give a different proof
than in loc.cit.

Proposition 2.1.18. Let k be a field and X → Spec(k) be a scheme of finite
type over k. Then the group Cycl(X/ Spec(k), r) is the free abelian group
generated by points of dimension r on X, i.e one has

Cycl(X/ Spec(k), r) = Cyclequi(X/ Spec(k), r) = Cycl(X, r).

Proof. Let R be a discrete valuation ring and f : Spec(R) → Spec(k) be a
morphism. Let Z be a closed subscheme of X. Since Z is flat over Spec(k) we
have that Spec(R)×Spec(k) Z is flat over Spec(R) thus automatically satisfying
the properties of φf (Z) hence they are equal. Hence it follows that if L is any
field and x : L → Spec(k) is any L-point of Spec(k) then for any fat point
(x0, x1) over x we have

(x0, x1)∗(Z) = cyclSpec(L)×Spec(k)X
(Spec(L) ×

Spec(k)
Z)

whence Item 2 of Definition 2.1.11 is automatically satisfied.

Lemma 2.1.19. Let S be a Noetherian scheme and X → S a scheme of finite
type over S. Then the following assertions hold true:

1. If Z is a subscheme of X such that the map Z → X → S factors through
Sred → S and T → Sred → S is a morphism of schemes. Then we have

Z ×
Sred

T = Z ×
S
T. (2.1.1)

2. If Z = nizi is a cycle on X such that the points zi lie over generic points
of S and are of dimension r in the corresponding fibers. Then we have

Z ∈ Cycl(X/S, r) if and only if Z ∈ Cycl(Xred/Sred, r). (2.1.2)

Proof. The first statement follows easily from the fact that closed embeddings
are monomorphisms in the category of schemes ([Stacks, Tag 01L7]). The
second statement follows easily from the first assertion and the definitions.

Observation 2.1.20 ([SV00, p.17]). Let S be a Noetherian scheme, X → S
be a scheme of finite type over S and Z =

∑
nizi be a cycle on X such that the

points zi lie over generic points of S and are of dimension r in the corresponding
fibers. Let Zi denote the closure of zi considered as a closed integral subscheme
of X. By Lemma 2.1.19 we see that in order to check if Z ∈ Cycl(X/S, r) we
may only consider the schemes Xred and Sred. Then by generic flatness we have
that the schemes Zi → Sred are flat over generic points of Sred and we can find
a dense subset U of Sred which all the Zi are flat over. Thus by Theorem 1.2.3
one can find a blow-up S′ → Sred such that the proper transforms Z̃i are flat
over S′.
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We can now formulate the following useful criterion. Due to this results
major importance we have included the proof found in [SV00].

Proposition 2.1.21 ([SV00, Proposition 3.1.5]). Under the assumptions of
Observation 2.1.20 the following conditions are equivalent:

1. Z ∈ Cycl(X/S, r) .

2. If x : Spec(k)→ S is any geometric point of S and

x′1, x
′
2 : Spec(k)→ S′

is a pair of its liftings to S′ then the cyclesW1,W2 on Xx = X ×S Spec(k)
given by the formulae

W1 =

k∑
i=1

ni cyclXx(Z̃i×
x′1

Spec(k))

W2 =
k∑
i=1

ni cyclXx(Z̃i×
x′2

Spec(k))

coincide.

Proof. (1 ⇒ 2): The geometric points x, x′1, x′2 give us set theoretical points
s ∈ S, s′1, s

′
2 ∈ S′ such that s′1, s′2 lie over s. We may assume that s (and

hence also s′1, s′2) is not generic. Using Corollary2.1.3 we construct discrete
valuation rings R′i and morphisms Spec(R′i)→ S′ which map the closed point
of Spec(R′i) to s′i and the generic point of Spec(R′i) to a generic point of S′.
Denote the residue fields of R′i by k′i. One checks easily that the scheme
(Spec(k′1)×S Spec(k′2))×S′×S S′ Spec(k) is not empty. Choosing any geometric
L-point of this scheme for a field L we get a commutative diagram

Spec(k′1) Spec(R′1) S′

Spec(L) Spec(k) S

Spec(k′2) Spec(R′2) S′

x′1

x′2

x

Thus we get a geometric point Spec(L) → S and two fat points Spec(L) →
Spec(R′i) → S over it. From commutativity of the aforementioned diagram
and Lemma 2.1.8 it follows that the pullbacks of the cycle Z with respect to
these fat points are equal to∑

ni cyclX ×S Spec(L)([(Z̃i×
x′1

Spec(k)) ×
Spec(k)

Spec(L)] and∑
ni cyclX ×S Spec(L)([(Z̃i×

x′2

Spec(k)) ×
Spec(k)

Spec(L)]

57



respectively. These cycles coincide according to the condition Z ∈ Cycl(X/S, r).
Lemma 1.7.2 shows that W1 =W2.

(2 ⇒ 1): Let x : Spec(k) → S be a geometric point of S and let
(x0, x1), (y0, y1) be a pair of fat points over x. From the valuative criterion of
properness the fat points have canonical liftings to fat points (x0, x

′
1), (y0, y

′
1)

of S′. This gives us two geometric points

x′ = x′1 ◦ x0 : Spec(k)→ S′

y′ = y′1 ◦ y0 : Spec(k)→ S′

of S′ over x. Our statement follows now from the obvious equalities:

(x0, x1)∗(Z) = (x0, x
′
1)∗(

∑
niZ̃i) =

∑
ni cycl(Z̃i×

x′
Spec(k))

(x0, x1)∗(Z) = (x0, x
′
1)∗(

∑
niZ̃i) =

∑
ni cycl(Z̃i×

y′
Spec(k))

Example 2.1.22. Let k be any algebraically closed field and let S denote the
plane nodal cubic curve S = Spec(k[x, y]/(y2 − x2 − x3)). The blow-up of S in
the singular point is the morphism π : A1

k → S induced by the ring morphism

k[x, y]/(y2 − x2 − x3)→ k[t]

given by

x 7→ (t2 − 1), y 7→ (t2 − 1)t

or in classical coordinates the map is given by t 7→ (t2 − 1, (t2 − 1)t).
Let p : A2

k → S be the composition

Spec(k[t, s]) = A2
k → A1

k
π→ S

where the first map is the projection to the x-axis. In this way we get a scheme
X = A2

k → S of finite type over S.
Let C = V (I) be any curve in X such that C projects dominantly onto

the x-axis. Then the generic fiber of the morphism C → S is isomorphic to
Spec(k(t)[s]/Ik(t)[s]) which is a zero dimensional scheme. Hence each generic
point of an integral curve dominating S has dimension zero in its fiber.

Furthermore letting s = (x, y) ∈ S denote the singular point of S and let
γ : Spec(k) → S be the corresponding morphism and γ1, γ2 : Spec(k) → A1

k

be the two lifts to A1
k and set L1 = V (t + 1) ⊂ A2

k and L2 = V (t − 1) ⊂ A2
k.
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Consider now the diagram where each square is fibered:

γ∗(C) = γ∗1(C)
∐
γ∗2(C) = (L1×A2

k
C
∐
L2×A2

k
C) C

γ∗(A2
k) = L1

∐
L2 = Spec(k[t, s]/(t+ 1))

∐
Spec(k[t, s]/(t− 1)) = (A1

k

∐
A1
k) A2

k

γ∗(A1
k) = (Spec(k[t]/(t+ 1))

∐
Spec(k[t]/(t− 1))) A1

k

Spec(k(s)) S

/

/

/

/

/

/
γ

Observe that if C is any integral curve dominating A1
k then since γ∗(C) =

γ∗1(C)
∐
γ∗2(C) is an effective Cartier divisor on C ([Stacks, Tag 02OO]), hence

the proper transform of C is the graph C → A1
k×S C of the morphism π|C .

By Proposition 2.1.21 we see that Cycl(X/S, 0) is generated by cycles of
the form

∑
aizi −

∑
bjwj where all ai, bj ≥ 0 and all zi, wj map to the generic

point of S and have dimension zero in their fibre subject to the following
requirement: For l = 1, 2∑

ai cyclL1
∐
L2

(Ll ∩ Zi) =
∑

bj cyclL1
∐
L2

(Ll ∩Wj)

where Zi,Wj denote the closures of zi, wj . The monoid Cycleff (X/S, 0) is
generated by cycles of the form z where z is over the generic point of S of
dimension zero in its fibre and if Z denotes the closure of z then Z∩(L1∪L2) = ∅.
An example of an effective relative zero cycle is the generic point of the curve
V (y(x+ 1)(x− 1) + x)2.

Consider now the parabola C1 = V (t + 1 − s2) ⊂ X. Observe that C1

obviously projects densely onto the x-axis and hence dominates S, furthermore
we have that

γ∗(C1) = γ∗1(C1)
∐

γ∗2(C1) = Spec(k[t, s]/(s2, t+ 1))
∐

Spec(k[t, s]/(2− s2, t− 1)) ∼=
∼= Spec(k[t, s]/(s2, t+ 1))

∐
Spec(k[t, s]/(

√
2− s, t− 1))

∐
Spec(k[t, s]/(

√
2 + s, t− 1)).

hence we have

cyclγ∗(A2
k)(γ

∗
1(C1)) = cyclL1

∐
L2

(γ∗1(C1) = 2(s, t+ 1)

while
cyclγ∗(A2

k)(γ
∗
2(C1)) = (

√
2− s, t− 1) + (

√
2 + s, t− 1)

Thus if we let η1 denote the generic point of the parabola C1, then we see from
Proposition 2.1.21 that η1 is not a relative zero cycle.

2Lucas Das Dores pointed out this nice example to me.
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However let us also consider the lines C2 := V (s −
√

2/2(t + 1)) and
C3 = V (s+

√
2/2(t+ 1)). We have

cyclγ∗(A2
k)(γ

∗
1(C2)) = (s, t+ 1)

cyclγ∗(A2
k)(γ

∗
2(C2)) = (s−

√
2, (t− 1))

and

cyclγ∗(A2
k)(γ

∗
1(C3)) = (s, t+ 1)

cyclγ∗(A2
k)(γ

∗
2(C3)) = (s+

√
2, t− 1)

hence letting η2, η3 be the generic points of C2 and C3 respectively, we see that

Z = η1 − η2 − η3 ∈ Cycl(X/S, 0).

The following result is insightful and a clear proof can be found in the
original source.

Proposition 2.1.23 ([SV00, Proposition 3.1.7]). Let S be a Noetherian scheme,
X → S be a scheme of finite type over S and Z =

∑k
i=1 nizi be an effective

cycle on X which belongs to Cycl(X/S, r) for some r ≥ 0. Denote by Zi the
closure of the point zi in X which we consider as an integral closed subscheme
in X. Then Zi is equidimensional of dimension r over S.

Remark 2.1.24. Proposition 2.1.23 is false for non-effective relative cycles. A
counter example is given in [SV00, Ex. 3.1.9].

2.2 Cycles associated with flat subschemes

Let p : X → S be a morphism of finite type of Noetherian schemes. We denote
by Hilb(X/S, r) (resp. PropHilb(X/S, r) ) the set of closed subschemes Z of
X ×S S which are flat (resp. flat and proper) and equidimensional of dimension
r over S. Let N(Hilb(X/S, r)), N(PropHilb(X/S, r)) (resp. Z(Hilb(X/S, r)),
Z(PropHilb(X/S, r))) be the corresponding freely generated abelian monoids
(resp. groups). The assignment S′/S → N(Hilb(X ×S S′/S′, r)) etc. defines
presheaf of abelian monoids (groups) on the category of Noetherian schemes
over S. If Z =

∑
niZi is an element of Z(Hilb(X/S, r)) and S′ is a Noetherian

scheme over S we denote by Z ×S S′ the corresponding element
∑
ni(Zi×S S′)

of Z(Hilb(X ×S S′/S′, r)).
In order to define the pullback of relative cycles we will need the following

result which is proved in the original source.

Proposition 2.2.1 ([SV00, Proposition 3.2.2]). Let X → S be a scheme
of finite type over a Noetherian scheme S and S′ → S be any Noetherian
scheme over S. Let further Z =

∑
niZi be an element of Z(Hilb(X/S, r)). If

cyclX(Z) = 0 then cyclX ×S S′(Z ×S S
′) = 0.
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It was pointed out by Shane Kelly to the author that Corollary 3.2.4 of
[SV00] is incorrect as stated there. The following statement is a correction of
loc.cit. suggested by David Rydh.

Corollary 2.2.2. Let X → S be a scheme of finite type over a Noetherian
scheme S which is reduced at its generic points, Z be an element of Hilb(X/S, r)
and (x0, x1, R) be a fat point over a k-point x : Spec(k)→ S of S. Then

(x0, x1)∗(cyclX(Z ×
S
Sred)) = cyclX ×S Spec(k)(Z ×

S
Spec(k)). (2.2.1)

Proof. Using Lemma 2.1.19 we easily reduce the proof to the case where the
scheme S is reduced.

Since Z ×S Spec(R) → Spec(R) is flat it follows that if we let η be the
image of the generic point under x1 then we have

cycl(Z ×
S

Spec(R)) = cycl(Z ×
S

Spec(R(0))) = cycl(Zη ×
Spec(k(η))

Spec(R(0))).

(2.2.2)
Furthermore since the projection prZη : Spec(R(0))×Spec(k(η)) Zη → Zη is flat
it follows from flat-pullback (1.7.2) that

cycl(Zη ×
Spec(k(η))

Spec(R(0))) = pr∗Zη(cycl(Zη)). (2.2.3)

Let now Zi be the irreducible components of Z, zi be their generic points and
ni be their multiplicities such that cyclX(Z) =

∑
nizi. We have∑

zi/η

nizi = cycl(Z ×
S

Spec(OS,η))

where the sum is taken over those points zi lying over the point η. Since S is
reduced it follows that OS,η = k(η) and thus we have∑

zi/η

nizi = cycl(Zη). (2.2.4)

Hence by (2.2.3) we have

cycl(Zη ×
Spec(k(η))

Spec(R(0))) =
∑
zi/η

ni cycl(((Zi)η ×
Spec(k(η))

Spec(R(0))))

=
∑
i

ni cycl(((Zi)η ×
Spec(k(η))

Spec(R(0)))).

(2.2.5)
Further since φx1(Zi)→ Spec(R) is flat for each i it follows that

cycl(φx1(Zi)) = cycl(φx1(Zi) ×
Spec(R)

Spec(R(0))) =

= cycl((Zi×
S

Spec(R)) ×
Spec(R)

Spec(R(0))) =

= cycl((Zi)η ×
Spec(k(η))

Spec(R(0))).
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and combining this with (2.2.5) we obtain

cycl(Zη ×
Spec(k(η))

Spec(R(0))) =
∑

ni cycl(φx1(Zi))

and finally (2.2.2) now yields the equality

cyclX ×S Spec(R)(Z ×
S

Spec(R)) =
∑

ni cyclX ×S Spec(R)(φx1(Zi)).

Proposition 2.2.1 yields now that

cyclX ×S Spec(k)(Z ×
S

Spec(k)) =
∑

ni cyclX ×S Spec(k)(φx1(Zi) ×
Spec(R)

Spec(k))

and the right hand side is by definition equal to (x0, x1)∗(CyclX(Z)).

Example 2.2.3. Let S = Z = X = Spec(k[x]/(x2)). Let R = k[t](t) and
consider the k-algebra morphism k[x]/(x)2 → R given by x 7→ 0. Then this
induces a morphism x1 : Spec(R) → S, and letting x0 : Spec(k) → Spec(R)
being the inclusion of the closed point, we see that we get a fat point (x0, x1)
of S. Now we have

(x0, x1)∗(cyclX(Z)) = (x0, x1)∗(2 Spec(k)) = 2(Spec(k))

while on the other hand we have

cyclX ×S Spec(k)(Z ×
S

Spec(k)) = cyclSpec(k)(Spec(k) = (Spec(k))

hence if S is not reduced at its generic points it is not correct that the cycles
(x0, x1)∗(cyclX(Z)) and cyclX ×S Spec(k)(Z ×S Spec(k)) coincide as stated in
[SV00, Cor.3.2.4].

Corollary 2.2.4 ([SV00, Corollary 3.2.5]). Let X → S be a scheme of finite
type over a Noetherian scheme S. Then the image of the map

Z(Hilb(X/S, r))→ Cycl(X).

given by
Z 7→ cyclX(Z ×

S
Sred)

lies in Cyclequi(X/S, r).

2.3 Chow presheaves

Base change

Theorem 2.3.1 ([SV00, Theorem 3.3.1]). Let X → S be a scheme of finite
type over a Noetherian scheme S, Z be an element of Cycl(X/S, r) and f :
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T → S be a Noetherian scheme over S. Then there is a unique element
ZT ∈ Cycl(X ×S T/T, r)⊗Z Q such that for any commutative diagram of the
form

Spec(A) T

Spec(k)

Spec(R) S

y1

f

y0

x0

x1

where (x0, x1) and (y0, y1) are fat k-points of S and T respectively one has:

(y0, y1)∗(ZT ) = (x0, x1)∗(Z).

Proof. We prove the theorem in several steps, starting with the following
lemma.

Lemma 2.3.2. Suppose (y0, y1, A) is a fat point over a k-point y : Spec(k)→ T .
Then we can find a field extension L/K and a fat point (x0, x1, R) over the
L-point Spec(L)→ S such that we have a commutative diagram

Spec(k) Spec(A) T

Spec(L)

Spec(R) S

y0 y1

f

ϕ

x0

x1

Proof. Let s ∈ S be the (set theoretic) image of the composition y◦f : Spec k →
S. By Corollary 2.1.3 we can find a k′-point x : Spec k′ → S whose image is
the point s and a fat point (x0, x1, R) over x

It is clear that the scheme Spec(k ⊗k(s) k
′) is nonempty, hence we can find

a field L together with maps ϕ : SpecL → Spec k, ψ : SpecL → Spec k′ such
that we have a commutative diagram

Spec(k) Spec(A) T

Spec(L)

Spec(k′) Spec(R) S

y0 y1

f

ϕ

ψ

x0 x1
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Corollary 2.3.3. Under the notations and assumptions of Theorem 2.3.1 the
cycle ZT is unique if it exists.

Proof. Suppose for the sake of contradiction we have two different cycles
Z1,Z2 ∈ Cycl(X ×S T/T, r) which both satisfy the properties of ZT . By
Corollary 2.1.17 there is a k-point y : Spec k → T and a fat point (y0, y1, A)
over y such that

(y0, y1)∗(Z1) 6= (y0, y1)∗(Z2).

By Lemma 2.3.2 we can now find a field extension L/k and a fat point (x0, x1, R)
over the L-point SpecL→ S such that the following diagram commutes

Spec(k) Spec(A) T

Spec(L)

Spec(R) S

y0 y1

f

ϕ

x0

x1

It follows from Lemma 1.7.2 that

(y0 ◦ ϕ, y1)∗(Z1) 6= (y0 ◦ ϕ, y1)∗(Z2)

contradicting the assumption that they are both equal to (x0, x1)∗(Z).

We now start proving existence, starting with a small auxiliary lemma.

Lemma 2.3.4. Let z be a point of X lying over a generic point of S such
that z has dimension r in its fiber. Let further Z denote the closure of z.
Let S′ → Sred be a blow-up such that the proper transform of Z denoted Z̃ is
flat over S′ (Theorem 1.2.3). Then Z̃ → S′ is universally equidimensional of
dimension r.

Proof. By Proposition 1.1.23 it is enough to show that Z̃ ×S′ Spec(K) →
Spec(K) is equidimensional of dimension r for every generic point Spec(K)→
S′. By Lemma 1.2.2 we have that Z̃ ×S′ Spec(K)→ Spec(K) factors as

Z̃ ×S′ Spec(K) Z ×S Spec(K) Spec(K)
∼=

The scheme Z ×S Spec(K) is either empty in which case it is trivially equidimen-
sional of dimension r or Spec(K) is Spec(k(f(z)) in which case Z ×S Spec(K)
is irreducible of dimension r by Lemma 2.1.13.

Corollary 2.3.5. Let S be a Noetherian scheme and X → S a morphism of
finite type over S. Let z be a point of X lying over a generic point of S such
that z has dimension r in its fiber. Let further Z denote the closure of z (with
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reduced scheme structure). Suppose that f : Spec(R)→ S be a morphism from
a discrete valuation ring to S mapping the generic point to a generic point of
S. Then φf (Z)→ Spec(R) is universally equidimensional of dimension r.

Proof. By Theorem 1.2.3 we can find a blow up S′ → Sred satisfying the
conditions of Lemma 2.1.8. The desired result now immediately follows from
Lemma 2.3.4.

The key part of the proof (of Theorem 2.3.1) is the simple case when T is a
point s of S which follows from the following descriptive lemma. This lemma
gives some additional information concerning fat points.

Lemma 2.3.6 ([SV00, Lemma 3.3.2]). Denote by p the exponential character-
istic of the field k(s). Then there exists a unique cycle Zs in Cycl(Xs, r)[1/p]
such that for any field extension k/k(s) and any fat point (x0, x1) over the
k-point Spec(k)→ Spec(k(s))→ S one has (x0, x1)∗(Z) = Zs ⊗k(s) k.

Proof. Suppose that Z =
∑
nizi and denote by Zi the closure of zi which we

consider as an integral closed subscheme of X and choose a blow up S′ → Sred

such that the proper transforms Z̃i are flat over S′.
Suppose that k/k(s) is a field extension such that the k-point Spec(k)→

Spec(k(s)) → S admits a lifting to S′. By Lemma 2.3.4 we have that
Z̃i×S′ Spec(k) is either ∅ or it is a scheme of pure dimension r. Consider
now the cycle

Zk :=
∑

ni cyclX ×S Spec(k)(Z̃i×
S′

Spec(k)) ∈ Cycl(X ×
S

Spec(k), r)

By Proposition 2.1.21 and Lemma 1.7.2 it follows that the cycle Zk is indepen-
dent of the choice of lifting of Spec(k)→ Spec(k(s))→ S to S′. Now since the
morphism S′ → S is surjective and of finite type we can find a finite normal
extension k0/k(s) such that the point Spec k0 → Spec k(s)→ S admits a lifting
to S′. By Proposition 2.1.21 and Lemma 1.7.2 again it follows that the cycle
Zk0 is Gal(k0/k(s))-invariant and hence by Lemma 1.7.3 descends to a cycle
Zs ∈ Cycl(Xs, r)[1/p].

Let now k be any extension of k(s) such that the point Spec(k) →
Spec(k(s)) → S admits a lifting to S′ and let L be a composite of k and
k0 over k(s). Then

Zk ⊗k L = Zk0 ⊗k0 L = Zs ⊗k(s) L = (Zs ⊗k(s) k)⊗k L

and hence Zk = Zs ⊗k(s) k.
Finally let k/k(s) be a field extension and (x0, x1, R) be a fat point over a

k-point Spec(k)→ Spec(k(s))→ S. By the valuative criterion of properness
the morphism x1 : Spec(R)→ S has a canonical lifting to S′. This gives us a
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lifting to S′ of our k-point Spec(k)→ S and it follows from Lemma 2.1.8 and
the construction of Zs that one has

(x0, x1)∗(Z) = Zk = Zs ⊗k(s) k.

In the course of the proof of Lemma 2.3.6 we have established that after
possibly extending the field k(s) the cycle Zs can be computed using flatification:

Lemma 2.3.7 ([SV00, Lemma 3.3.3]). Let S′ → S be a blow-up such that the
proper transforms Z̃i of Zi are flat over S′ and let k/k(s) be a field extension
such that the k-point Spec(k)→ Spec(k(s))→ S admits a lifting to S′. Then
Zs ⊗k(s) k =

∑
ni cyclX ×S Spec(k)(Z̃i×S′ Spec(k)).

Construction 2.3.8 ([SV00, p.25]). Let τ1, . . . , τn be the generic points of T
(recall that T is a Noetherian scheme over S) and σ1, . . . , σn be their images in
S. For j = 1, . . . , n let Zσj be as in Lemma 2.3.6 and consider the cycles

Zσj ⊗k(σj) k(τj) =
∑
l

nj,lzj,l ∈ Cycl(X ×
S

Spec(k(τj)), r)⊗Z Q.

Here nj,l are rational numbers and zj,l are points of X ×S Spec(k(τj)) lying
over τj and having dimension r in their fibers. Note that X ×S Spec(k(τj)) is
nothing but the fiber of τj under the morphism X ×S T → T hence the points
zj,l may be considered as points of X ×S T . Set ZT :=

∑
j,l nj,lzj,l.

We will now show that the cycle ZT from Construction 2.3.8 belongs to
Cycl(X ×S T/T, r)⊗Z Q and has the desired property of Theorem 2.3.1. We
give the same proof of this fact as in [SV00].

Consider a commutative diagram of the form

Spec(A) T

Spec(k)

Spec(R) S

y1

f

y0

x0

x1

in which (x0, x1) (resp. (y0, y1)) is a fat k-point of S (resp. of T ). Let as before
S′ → Sred denote a blow up of Sred such that the proper transforms Z̃i of Zi
are flat over S′. Lemma 1.3.12 shows that there is a discrete valuation ring
A′ and a surjective morphism Spec(A′) → Spec(A) such that the morphism
Spec(A′)→ S admits a lifting to S′. Denote the residue field of A (resp. of A′)

66



by kA (resp. kA′) and let k′ be a composite of k and kA′ over kA so that we
have the following commutative diagram

Spec(k′) Spec(A′) S′

Spec(k) Spec(A) T S
y0 y1

Letting Zj,l denote the closure of the points zj,l considered as integral sub-
schemes of X ×S T , then by Lemma 2.3.4 and Corollary 2.3.5 we have that
the morphisms φy1(Zj,l)×Spec(A) Spec(A′)→ Spec(A′) and Z̃i×S′ Spec(A′)→
Spec(A′) are flat and universally equidimensional of dimension r. Thus we can
consider the following two elements in Q(Hilb(X ×S Spec(A′)/ Spec(A′), r)):

W =
∑
i

ni(Z̃i×
S′

Spec(A′))

W1 =
∑
j,l

nj,l(φy1(Zj,l) ×
Spec(A)

Spec(A′))

Assume that y1 maps the generic point of Spec(A) to τ1 , then we further have
that

W1 =
∑
l

n1,l(φy1(Z1,l) ×
Spec(A)

Spec(A′))

Lemma 2.3.9 ([SV00, Lemma 3.3.5]).

cyclX ×S Spec(A′)(W) = cyclX ×S Spec(A′)(W1)

Proof. Let K (resp. K ′) denote the quotient field of A (resp. A′). Since the map
p : Spec(K ′)→ Spec(A′) is flat we have the map p∗ : Cycl(X ×S Spec(A′))→
Cycl(X ×S Spec(K ′)) which we can restrict to relative cycles and extend to
rational coefficients and get a map

Cycl(X ×
S

Spec(A′)/Spec(A′), r)⊗ZQ→ Cycl(X ×
S

Spec(K ′)/ Spec(K ′), r)⊗ZQ

which is clearly injective. Thus we may replace A′ by K ′ everywhere. Further-
more

cyclX ×S Spec(K′)(W ×
Spec(A′)

Spec(K ′)) =
∑

ni cyclX ×S Spec(K′)(Z̃i×
S′

Spec(K ′))

and according to Lemma 2.3.7 this cycle is equal to Zσ1 ⊗k(σ1) K
′.
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On the other hand we have:

cyclX ×S Spec(K′)(W1 ×
SpecA′

Spec(K ′)) =

=
∑
l

n1,l cyclX ×S Spec(K′)([φy1(Z1,l) ×
Spec(A)

Spec(K)] ×
Spec(K)

Spec(K ′)) =

=
∑
l

n1,l cyclX ×S Spec(K)(Z1,l×
T

Spec(K) ×
Spec(K)

Spec(K ′)) =

= [
∑
l

n1,l cyclX ×S Spec(k(τ1))(Z1,l×
T

Spec(k(τ1)))]⊗k(τ1) K
′

Furthermore by Lemma 2.1.13 we have that

cyclX ×S Spec(k(τ1))(Z1,l×
T

Spec(k(τ1))) = z1,l

Thus

cyclX ×S Spec(K′)(W1 ×
SpecA′

Spec(K ′)) =

[
∑
l

n1,l cyclX ×S Spec(k(τ1))(Z1,l×
T

Spec(k(τ1)))]⊗k(τ1) K
′ =

= (
∑
l

n1,lz1,l)⊗k(τ1) K
′ = (Zσ1 ⊗k(σ1) k(τ1))⊗k(τ1) K

′ =

= Zσ1 ⊗k(σ1) K
′.

which completes the proof of the lemma.

Proposition 2.2.1 implies now that

cyclX ×S Spec(k′)(W ×
SpecA′

Spec(k′)) = cyclX ×S Spec(k′)(W1 ×
Spec(A′)

Spec(k′))

i.e.∑
ni cyclX ×S Spec(k′)(Z̃i×

S′
Spec(k′)) =

∑
l

n1,l cyclX ×S Spec(k′)(φ1(Z1,l ×
Spec(A′)

Spec(k′)) =

= (y0, y1)∗(ZT )⊗k k′.

On the other hand the cycle (x0, x1)∗(Z)⊗k k′ coincides with∑
ni cyclX ×S Spec(k′)(Z̃i×

S′
Spec(k′))

where this time the morphism Spec(k′) → S′ is a lifting of the same point
Spec(k′) → Spec(k) → Spec(R) → S obtained using the unique lifting of
Spec(R)→ S. Proposition 2.1.21 shows that (x0, x1)∗(Z)⊗kk′ = (y0, y1)∗(ZT )⊗k
k′ and hence (x0, x1)∗(Z) = (y0, y1)∗(ZT ). This shows that the cycle ZT has the
desired property and by Lemma 2.3.2 we also see that ZT ∈ Cycl(X ×S T/T, r).
Theorem 2.3.1 is proven.
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Notation 2.3.10 ([SV00, p.29]). Let f : T → S be a morphism of Noetherian
schemes and X → S be a scheme of finite type over S. We denote by

cycl(f) : Cycl(X/S, r)⊗Z Q→ Cycl(X ×
S
T/T, r)⊗Z Q

the homomorphism cycl(f)(Z) = ZT where ZT is defined as in Theorem 2.3.1.

The following remark is similar to the remark on p.27 of [SV00].

Remark 2.3.11. In general it is possible that a cycle with integer coefficients
can be pulled back to one whose coefficients are not integers. Such an example
due to A.S. Merkurjev will be given in Example 2.5.14.

The statement of the following lemma is stated without proof on p.30 of
[SV00].

Lemma 2.3.12. Suppose we have two morphisms f : T ′ → T and g : T → S.
Then

cycl(g ◦ f) = cycl(f) ◦ cycl(g)

Proof. Suppose k is a field and A,A′ are discrete valuation rings such that we
have a commutative diagram of the form:

Spec(A′) T ′

Spec(k)

Spec(A) T

y′1

f

y′0

y0

y1

By Lemma 2.3.2 we can find a field extension L/k and a discrete valuation ring
R such that we get a commutative diagram of the form

Spec(A′) T ′

Spec(L) Spec(k)

Spec(A) T

Spec(R) S

y′1

f
ϕ

x0

y′0

y0

y1

g

x1
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Then

(y0, y1)∗(cycl(g)(Z))⊗k L = (y0 ◦ ϕ, y1)∗(cycl(g)(Z)) = (x0, x1)∗(Z) =

= (y′0 ◦ ϕ, y′1)∗(cycl(g ◦ f)(Z)) = (y′0, y
′
1)∗(cycl(g ◦ f)(Z))⊗k L

hence
(y′0, y

′
1)∗(cycl(g ◦ f)(Z)) = (y0, y1)∗(cycl(g)(Z))

Thus by uniqueness of cycl(f)(cycl(g)(Z)) it follows that

(cycl(g ◦ f)(Z)) = cycl(f)(cycl(g)(Z)).

Properties of the pullback homomorphism

Note the easy observations regarding the pullback cycl(f).

Lemma 2.3.13. Let X → S be a scheme of finite type over a Noetherian
scheme S, Z =

∑
aizi ∈ Cycl(X/S, r).

(1) Suppose that f : T → S is a Noetherian scheme over S. If the set
theoretic image f(T ) does not intersect the set theoretic image of Supp(Z)
in S, then cycl(f) = 0.

(2) If η is a generic point of S and f : Spec k(η) → S is the canonical
morphism, then

cycl(f)(Z) =
∑

ai cyclX ×S Spec k(η)(Zi×
S

Spec(k(η)))

=
∑

zi lies over η

aizi ∈ Cycl(X ×
S

Spec k(η), r).

(3) If s ∈ S and there exists a fat point (x0, x1, R) over the canonical k(s)-
point f : Spec k(s)→ S, then (x0, x1)∗(Z) = Zs.

Proof. For (1) note that if we have a field k and fat points (x0, x1, R), (y0, y1, A)
and a commutative diagram of the form

Spec(A) T

Spec(k)

Spec(R) S

y1

f

y0

x0

x1
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Then the set theoretic image of supp(Z) does not contain the image of x1 ◦ x0,
hence (x0, x1)∗(Z) = 0 thus by uniqueness we deduce that cycl(f)(Z) = 0.

For (2): For any diagram of the form

Spec(A) Spec(k(η))

Spec(k)

Spec(R) S

y1

f

y0

x0

x1

we easily see that Spec(R)
x1→ S factors through Spec k(η)→ S thus

(x0, x1)∗ =
∑

ai cyclX ×S Spec(k)(Zi×
S
k) =

= (y0, y1)∗(
∑

ai cyclX ×S Spec k(η)(Zi×
S

Spec(k(η))))

= (y0, y1)∗(
∑

zi lies over η

aizi).

For (3): For an independent variable t we have that the canonical inclusion
k(s)→ k(s)[t](t) gives a fat point over the identity map Spec k(s)→ Spec k(s).
Consider now the diagram

Spec(k(s)[t](t)) Spec(k(s))

Spec(k(s))

Spec(R) S

y1

f

y0

x0

x1

Then clearly (y0, y1)∗(Zs) = Zs hence (x0, x1)∗(Z) = Zs.

Lemma 2.3.14. Let S be a Noetherian scheme and X → S a scheme of finite
type over S. Let Z =

∑
nizi ∈ Cycl(X/S, r) and let Zi denote the closure of

zi in X. If f : S′ → S is a blow-up of Sred such that the proper transforms Z̃i
of Zi are flat over S′ then

cycl(f)(Z) =
∑

ni cyclX ×S S′(Z̃i)

and each Z̃i is flat and equidimensional of dimension r over S′.
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Proof. Let τ1, . . . , τn denote the generic points of S′ and let σ1, . . . , σn be their
images in S. By Construction 2.3.8 we have

cycl(f)(Z) =

n∑
j=1

Zσj ⊗k(σj) k(τj)

where the points here are considered as points in the scheme X ×S S′. By
Lemma 2.3.7 we now have that

cycl(f)(Z) =
n∑
j=1

Zσj ⊗k(σj) k(τj) =

=
n∑
j=1

∑
i

ni cyclX ×S Spec(k(τj))(Z̃i×
S′

Spec(k(τj))) =
∑
i

ni cyclX ×S S′(Z̃i).

The last statement follows from Lemma 2.3.4

Lemma 2.3.15 ([SV00, Lemma 3.3.6]). In the notations and assumptions of
Theorem 2.3.1 we have

supp(ZT ) ⊂ (supp(Z))T = supp(Z)×
S
T.

Proof. The claimed inclusion can be checked fiberwise hence it is sufficient
to consider the case T = Spec(k) for a field k. Using Corollary 2.1.3 we find
an extension k′/k and a fat point (x0, x1, R) over the k′-point Spec(k′) →
Spec(k)→ S. The defining property of the cycle Zk (Lemma 2.3.6) shows that

supp(Zk) ×
Spec(k)

Spec(k′) = supp(Zk′) = supp((x0, x1)∗(Z)) ⊂

⊂ ∪iφx1(Zi) ×
Spec(R)

Spec(k′) ⊂ ∪i(Zi×
S

Spec(R)) ⊂ ∪i(Zi×
S

Spec(R)) ×
Spec(R)

Spec(k′) =

= supp(Z)×
S

Spec(k′) = (supp(Z)×
S

Spec(k)) ×
Spec(k)

Spec(k′).

Since the morphism Xk′ → Xk is surjective the above inclusion implies the
desired one supp(Zk) ⊂ supp(Z)×S Spec(k).

Corollary 2.3.16. Suppose that S is a Noetherian scheme and Z ∈ Cyclequi(X/S, r).
Then for any Noetherian scheme T and morphism T → S we have that the
generic points of Supp(ZT ) are generic points of T ×S Supp(Z).

Proof. By Lemma 2.3.15 we have the inclusion

Supp(ZT ) ⊂ T ×
S

Supp(Z)

Let zi be any generic point of Supp(ZT ) and z be a generic point of T ×S Supp(Z)
whose closure contains the point zi. Then it is clear that both points lie over a
generic point of S say η and by Lemma 1.1.15 it easily follows that we must
have zi = z.
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Lemma 2.3.17 ([SV00, Lemma 3.3.7]). Consider a pull-back square of mor-
phisms of finite type of Noetherian schemes of the form

X ′ X

S′ S
f

and assume that the morphism f is universally open and any generic point of
X lies over a generic point of S. Then any generic point of X ′ lies over a
generic point of S′.

Lemma 2.3.18 ([SV00, Lemma 3.3.8]). Let X → S be a scheme of finite type
over a Noetherian scheme S, Z =

∑
nizi be an element of Cycl(X/S, r)⊗Q, f :

S′ → S be Noetherian scheme over S and Z ′ = cycl(f)(Z) be the corresponding
element of Cycl(X ×S S′/S′, r)⊗Q.

(1) If f is a universally open morphism then supp(Z ′) = (supp(Z)×S S′)red.

(2) If f is dominant then supp(Z) is the closure of prX(Supp(Z ′)) where
prX : X ×S S′ → X is the projection.

Proof. For (1): The inclusion

supp(Z ′) ⊂ (supp(Z)×
S
S′)red

follows from Lemma 2.3.15. It is enough to check that these two sets have the
same generic points. To this extent note that Lemma 2.3.17 implies immediately
that generic points of supp(Z)×S S′ lie over generic points of S′. Hence we
may assume that S′ = Spec(k) and the image of S′ in S is a generic point η of
S. Then k is an extension of k(η) and according to Lemma 1.7.2(2) we have

supp(Z ′) = supp(Zη ⊗k(η) k) = (supp(Zη) ×
Spec(k(η))

Spec(k))red.

By Lemma 2.3.13(2) we have

Zη =
∑

zi lies over η

nizi

and hence supp(Zη) = supp(Z)×S Spec(k(η)).
For (2): It is enough to show that zi ∈ prX(Supp(Z ′)) for all i. Let ηi

denote the image of zi in S and let η′i be a point of S′ lying over ηi. Note that
Zk(η′i)

= (Z ′)k(η′i)
and hence by Lemma 2.3.15 we have supp(Zk(ηi)) ⊂ Supp(Z ′).

Moreover part (1) of this present lemma yields that

supp(Zηi ×
Spec(k(ηi))

Spec(k(η′i)))red = supp(Zη′i)
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And since the morphism

supp(Zηi) ×
Spec(k(ηi))

Spec(k(η′i))→ supp(Zηi)

is surjective and by Lemma 2.3.13(2) we have zi ∈ Zηi the desired result
follows.

The following result is a corrected version of [SV00, Lemma.3.3.10] (see the
paragraph preceding Corollary 2.2.2).

Lemma 2.3.19. Let T → S be a morphism of Noetherian schemes. Then for
any scheme X of finite type over S and W an element of Z(Hilb(X/S, r)) we
have

[CyclX(W×
S
Sred)]T = cyclX ×S T (WT ×

T
Tred)

Proof. This is immediate from Corollary 2.2.2.

Lemma 2.3.20 ([SV00, Lemma 3.3.12]). Let X → S be a scheme of finite type
over a Noetherian scheme S and f : S′ → S be a flat morphism of Noetherian
schemes. Assume further that the schemes S and S′ are both reduced. Then
for any element Z in Cycl(X/S, r) one has

cycl(f)(Z) = f∗X(Z)

where fX = prX : X ×S S′ → X and f∗X is the flat pull-back defined in Section
1.7.

Proof. Let τ1, . . . , τn denote the generic points of S′ and we let σ1, . . . , σn be
their images in S under the morphism f . Since generalizations lift along flat
morphisms it follows that all the σi are generic points of S. We briefly recall
how cycl(f)(Z) is constructed: Let ni,j ∈ Q be such that we have

Zσi ⊗k(σi) k(τi) =
∑
j

ni,jzi,j ∈ Cycl(X ×
S

Spec(k(τi)), r)⊗Z Q

Then cycl(f)(Z) =
∑

i,j ni,jzi,j where zi,j is considered as a point in X ×S S′.
By Lemma 2.3.13(2) it follows that if Z =

∑
alzl with Zi denoting the closure

of zi in X then we have

Zσi ⊗k(σi) k(τi) =
∑

al cyclX ×S Spec(k(τi))(Zl×
S

Spec(k(τi)))

On the other hand we have

f∗X(Z) =
∑

al cyclX ×S S′(Zl×
S
S′)

74



Hence if we can show that the generic points of Zl×S Spec(k(τi)), as i goes
through 1, . . . , n , are exactly the generic points of S′×S Zl then we will have
that

cyclX ×S S′(Zl×
S
S′) =

∑
i

cyclX ×S S′((Zl×
S
S′)×

S′
Spec(OS′,τi))

Since S′ is reduced we have OS′,τi = k(τi) we only need to compare generic
points to complete the proof. By continuity of the projection Zl×S S′ → S′

we easily see that any generic point of Zl×S Spec(k(τi)) must necessarily be a
generic point of Zl×S S′. Suppose now that ξ is a generic point of S′×S Zl.
Since S′×S Zl → Zl is flat it follows that ξ is mapped to zl the generic point
of Zl. Since S is reduced by assumption there is an open dense subset U of
S such that Zl → X → S is flat over U , hence we see that the morphism
Spec k(ξ)→ S′×S Zl factors through S′×S Zl×S U , but the latter is flat over
S′ hence ξ is mapped to one of the generic points τi of S′ which completes the
proof.

Chow presheaves

For a scheme X of finite type over a Noetherian scheme S we follow [SV00]
and set

Cycl(X/S, r)Q(S′) := Cycl(X ×
S
S′/S′, r)⊗Z Q.

By Lemma 2.3.12 we then get a presheaf of Q-vector spaces

Cycl(X/S, r)Q : NoethSch /S → VectQ

on the category of Noetherian schemes over S. Similarly in the notations
of [SV00] we also have the presheaves of Q-vector spaces PropCycl(X/S, r)Q,
Cyclequi(X/S, r)Q, and PropCyclequi(X/S, r)Q as well as presheaves of uniquely
divisible abelian monoids Cycleff (X/S, r)Q+ , PropCycleff (X/S, r)Q+ .

Lemma 2.3.21 ([SV00, Lemma 3.3.9]). Let S be a Noetherian scheme, X → S
be a scheme of finite type over S and Z be an element of Cycl(X/S, r)Q. Then
the following conditions are equivalent:

(1) For any Noetherian scheme T over S the cycle ZT belongs to Cycl(X ×S T/T, r)
(inparticular Z ∈ Cycl(X/S, r)).

(2) For any point s ∈ S the cycle Zs belongs to Cycl(Xs, r).

(3) For any point s ∈ S there exists a separable field extension k/k(s) such
that the cycle Zk = Zs ⊗k(s) k belongs to Cycl(X ×S Spec(k), r).

Proof. (1) obviously implies (2) which again obviously implies (3). To see that
(3) implies (2) apply Lemma 1.7.2 and Lemma 1.4.9.

The final implication (2⇒ 1) follows from the construction of ZT .
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Definition 2.3.22 ([SV00, p.30-31]). We shall call a relative cycle satisfying
the equivalent conditions of Lemma 2.3.21 a relative cycle with universally
integral coefficients. We denote by Cycl(X/S, r)UI (resp.

PropCycl(X/S, r)UI , Cyclequi(X/S, r)UI , PropCyclequi(X/S, r)UI

) the subgroup of Cycl(X/S) (resp. of PropCycl(X/S, r), Cyclequi(X/S, r), and
of PropCyclequi(X/S, r)) consisting of relative cycles with universally integral
coefficients. It is clear that Cycl(X/S, r)UI (resp. . . .) yields a subpresheaf in
the presheaf Cycl(X/S, r)Q (resp. . . .). Moreover

PropCycl(X/S, r)UI = Cycl(X/S, r)UI ∩ PropCycl(X/S, r)Q

etc.

Remark 2.3.23. In [SV00] the presheaves Cycl(X/S, r)UI and PropCycl(X/S, r)UI
are denoted by the notation z(X/S, r) and c(X/S, r) respectively.

Lemma 2.3.24. We have a homomorphism of presheaves

cycl : Z(Hilb(X/S, r))→ Cycl(X/S, r)UI .

given by
W 7→ cyclX(W×

S
Sred)

Proof. Follows immediately from Lemma 2.3.19.

Remark 2.3.25. Lemma 2.3.24 is the corrected statement of Corollary 3.3.11
in [SV00].

Proposition 2.3.26 ([SV00, Proposition 3.3.13]). Let S be a Noetherian
scheme of exponential characteristic n and X → S be a scheme of finite type
over S. Then the subgroups Cycl(X ×S T/T, r)[1/n] in Cycl(X ×S T/T, r)⊗ZQ
for Noetherian schemes T over S form a subpresheaf Cycl(X/S, r)[1/n] in the
presheaf Cycl(X/S, r)Q.

Proof. Follows easily from Lemma 2.3.6 and the construction of the pullback.

The next proposition tells us that the definition Cycl(X/S, r)UI is reason-
able. The proof given in the original source is rather clear and therefore omitted
here.

Proposition 2.3.27 ([SV00, Proposition 3.3.14]). Let X → S be a scheme of
finite type over a Noetherian scheme S. Then the quotient presheaf

Cycl(X/S, r)Q/Cycl(X/s, r)UI

is a presheaf of torsion abelian groups. i.e. for any Z ∈ Cycl(X/S, r) there is
a positive integer N such that NZ ∈ Cycl(X/S, r)UI .
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Corollary 2.3.28. Let X → S be a scheme of finite type over a Noetherian
scheme S. Then the canonical morphisms

Cycl(X/S, r)UI ⊗Z Q→ Cycl(X/S, r)Q (2.3.1)

Cycleff (X/S, r)UI ⊗N Q+ → Cycleff (X/S, r)Q+ (2.3.2)

are isomorphisms, and the analogous statements for the proper and equidimen-
sional versions also hold.

Remark 2.3.29. Suppose that k is a field of exponential characteristic p and S
is a Noetherian scheme such that k is a subfield of the residue field k(s) for any
point s ∈ S. If X → S is a scheme of finite type over S and Z ∈ Cycl(X/S, r)
is a relative cycle then for any point s ∈ S it follows from Lemma 2.3.6 that
the cycle Zs has necessarily coefficients in Z[1/p]. Proposition 2.3.27 tells us
that we can find some N > 0 such that N · Zs has integral coefficients for
all s ∈ S and it is clear that if pn is the greatest power of p dividing N then
pnZ ∈ Cycl(X/S, r)UI .

The last proposition we state in this section tells us that there is a relatively
large class of schemes where Cycl(X/S, r) and Cycl(X/S, r)UI coincide. Again
we refer the reader to the original source for a clear proof.

Proposition 2.3.30 ([SV00, Proposition 3.3.15]). Let S be a regular Noethe-
rian scheme. Then for any scheme of finite type X over S and any r ≥ 0 one
has:

Cycl(X/S, r) = Cycl(X/S, r)UI

Cyclequi(X/S, r) = Cyclequi(X/S, r)UI

etc.

2.4 Relative cycles over geometrically unibranch
schemes

Over geometrically unibranch schemes it turns out that the group of equidi-
mensional relative cycles of dimension r are freely generated by integral closed
subschemes which are equidimensional of relative dimension r over the base.
In order to prove this we will need the following lemma whose proof can be
found in [SV00].

Lemma 2.4.1 ([SV00, Lemma 3.4.1]). Let k be a field, X → Spec(k), S →
Spec(k) be two scheme of finite type over k and Z be a closed subscheme in
X ×Spec(k) S defined by a nilpotent sheaf of ideals which is flat over S. Let
further E be an extension of k and s1, s2 be two E-points of S over k. If S is
geometrically connected then the cycles associated with the closed subschemes
Z ×s1 Spec(E) and Z ×s2 Spec(E) in X ×Spec(k) Spec(E) coincide.
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Theorem 2.4.2 ([SV00, Theorem 3.4.2]). Let S be a Noetherian geometrically
unibranch scheme and X → S be a scheme of finite type over S. Let further
Z ⊂ X be a closed subscheme which is equidimensional of relative dimension r
over S. Then cyclX(Z) ∈ Cyclequi(X/S, r).

Proof. By Corollary 1.1.19 we may assume that the closed subscheme Z is
integral. Choose a blow-up S′ → Sred such that the proper transform Z̃ of Z
is flat over S′. Let further k be a field, s : Spec(k)→ S be a k-point of S and
s1, s2 : Spec(k)→ S′ be two liftings of s to S′. According to Proposition 2.1.21
we have to show that the cycles cycl(Z̃ ×s1 Spec(k)), cycl(Z̃ ×s2 Spec(k)) co-
incide. Note that according to Proposition 1.1.20 and Lemma 1.1.25 the
closed subscheme Z̃ in Z ×S S′ is defined by a nilpotent sheaf of ideals
and hence Z̃ ×S Spec(k) is a closed subscheme of (Z ×S S′)×S Spec(k) =
(Z ×S Spec(k))×Spec(k)(S

′×S Spec(k)) defined by a nilpotent sheaf of ideals.
The scheme S′×S Spec(k) is geometrically connected according to Proposition
C.2.16. Thus our statement follows from Lemma 2.4.1.

Remark 2.4.3. Theorem 2.4.2 is very similar to [Kol96, p. I.3.17].

Corollary 2.4.4 ([SV00, Corollary 3.4.3]). Let S be a geometrically unibranch
scheme and X → S be a scheme of finite type over S. Then the abelian group
Cyclequi(X/S, r) (resp. PropCyclequi(X/S, r)) is freely generated by cycles of
integral closed subschemes Z in X which are equidimensional (resp. proper and
equidimensional) of dimension r over S.

Corollary 2.4.5 ([SV00, Corollary 3.4.4]). Let S be a Noetherian geometrically
unibranch scheme and X → S be a scheme of finite type over S. Then the
abelian group Cyclequi(X/S, r) (resp. the abelian group PropCyclequi(X/S, r))
is generated by the abelian monoid Cycleff (X/S, r) (resp. by the abelian monoid
PropCycleff (X/S, r)).

Proof. Follows immediately from Proposition 2.1.23 and Theorem 2.4.2.

Corollary 2.4.6 ([SV00, Corollary 3.4.5]). Let S be a Noetherian regular
scheme and X be a scheme of finite type over S. Then the abelian group
Cyclequi(X/S, r)UI(S) (resp. the abelian monoid Cycleff (X/S, r)UI(S)) is the
free abelian group (resp. free abelian monoid) generated by closed integral
subschemes of X which are equidimensional of dimension r over S.

Proof. Follows immediately from Proposition 2.3.30 and Theorem 2.4.2.

Corollary 2.4.7 ([SV00, Corollary 3.4.6]). Let S be a Noetherian regular
scheme and X be a scheme of finite type over S. Then the abelian group
PropCyclequi(X/S, r)UI(S) (resp. abelian monoid PropCycleff (X/S, r)(S)) is
the free abelian group (resp. free abelian monoid) generated by closed integral
subschemes of X which are proper and equidimensional of dimension r over S.
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Example 2.4.8. Let S denote the plane nodal cubic curve S = Spec(k[x, y]/(y2−
x2−x3)). Example C.2.4 shows that S is not unibranch and hence not geometri-
cally unibranch. The aforementioned example also shows that the normalization
of S is the morphism Spec(k[t]) = A1

k → S induced by the ring morphism
x 7→ (t2 − 1), y 7→ (t2 − 1)t. Note that the only point of A1

k/S lying over a
generic point of S is the generic point ξ of A1

k itself. We will show that ξ is not
a relative zero cycle, that is ξ /∈ Cycl(A1

k/S, 0). To this extent note that the
preimage of the singular point of S is the two points (t+ 1) and (t− 1) of A1

k.
This gives us two fat points over the singular point p : Spec(k)→ S as follows:
Consider the ring map R = k[t](t−1) → k given by t 7→ 1, this induces a mor-
phism of schemes x0 : Spec(k)→ Spec(R) with the closed point as its image.
Let further x1 : Spec(R)→ S be the obvious composition Spec(R)→ A1

k → S
this gives us a fat point (x0, x1, R) over p. Similarly letting A = k[t](t+1) we
get another fat point (y0, y1, A) over p.

The maps idSpec(R) : Spec(R)→ Spec(R) and the canonical map Spec(R)→
A1
k induces a closed embedding

Spec(R) Spec(R)×S A1
k./

We claim that this closed embedding is in fact equal to φx1(A1
k). Indeed it

is obviously flat over Spec(R) and easily seen to be an isomorphism over the
generic point of Spec(R) as well. Now note that

Spec(k)×
S
A1
k
∼= Spec(k[t]/(t2 − 1)) ∼= Spec(k[t]/(t+ 1))

∐
Spec(k[t]/(t− 1))

And we have that

(x0, x1)∗(ξ) = CyclSpec(k)×S A1
k
(Spec(k) ×

Spec(R)
Spec(R)) = Spec(k[t]/(t− 1))

On the other hand we have

(y0, y1)∗(ξ) = Spec(k[t]/(t+ 1))

hence Cycl(A1
k/S, r) = 0 for all r. We could also have showed this using

Proposition 2.1.21.

Example 2.4.9. For simplicity we here fix an algebraically closed field k and
consider the plane nodal cubic in the projective plane S = V+(y2z−x2z−x3) ⊂
P2
k. We know that the blow-up of S is β : P1

k → S and if we give P1
k coordinates

λ and µ then the blow up β : P1
k → S can be understood in terms of classical

points as the map taking [λ : µ] to [µλ2 − µ3 : λ3 − µ2λ : µ3] and we see that
the points p1 = (µ− λ), p2 = (−µ− λ) ∈ P1

k corresponding to the coordinates
[1 : 1] and [−1 : 1] respectively, are both mapped to the singular point (x, y)
which corresponds to the coordinates [0 : 0 : 1] of S. Now consider a P2

k with
coordinates X0, X1, X2 and consider the cubic polynomials

g(X0, X1, X2) := X1X
2
2 +X0X

2
1 ; h(X0, X1, X2) = X0X1X2 +X2

0X2
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since g and h don’t have common factors and involve all three coordinates of
P2
k we have that

X := V (λg + µh) ⊂ P1
k × P2

k

defines a smooth elliptic surface over P1
k. We then have a canonical morphism

X → S of finite type. Consider now the curves

Z1 : = V (µX0 − λX1, X1 +X2) ⊂ X
Z2 : = V (−µX0 − λX1,−X1 +X2) ⊂ X.

It is readily checked that the composition of Zi with the projection onto P1
k

is an isomorphism, thus letting z1 and z2 denote the respective generic points
of Z1 and Z2, we have that z1, z2 are both mapped to the generic point of S.
Moreover these points have dimension 0 in their fibers. We will however show
that the cycle Z = z1 − z2 /∈ Cycl(X/S, 0).

Let s denote the singular point of S , and consider the corresponding k-point
γ : Spec(k(s)) → S. Let R1 (resp. R2) be the discrete valuation ring OP1

k,p1

(resp. OP1
k,p2

). Then R1 and R2 give us fat points over γ

Spec k
γ0→ Spec(R1)

γ1→ S

Spec k
τ0→ Spec(R2)

τ1→ S

By either using the fact that Z1 and Z2 isomorphic to P1
k or the valuative

criterion of properness we have that the maps Spec(Ri)→ P1
k both lift to Z1

and Z2. It is then readily checked using that k(S) = k(Z1) = k(Z2) that for
i = 1, 2 the graphs of the liftings

Spec(R1) Spec(R1)×S Zi/

satisfy the following

( Spec(R1) Spec(R1)×S Zi/ ) = φγ1(Zi) (2.4.1)

( Spec(R2) Spec(R1)×S Zi/ ) = φτ1(Zi). (2.4.2)

Consider the fibers

Xp1 = X ×
P1
k

Spec(k(p1)) = V (X1X
2
2 +X0X

2
1 +X0X1X2 +X2

0X2)

Xp2 = X ×
P1
k

Spec(k(p2)) = V (−(X1X
2
2 +X0X

2
1 ) +X0X1X2 +X2

0X2)

(Z1)p1 = Z1 ×
P1
k

Spec(k(p1)) = V (X0 −X1, X1 +X2) ⊂ Xp1

(Z1)p2 = Z1 ×
P1
k

Spec(k(p2)) = V (X0 +X1, X1 +X2) ⊂ Xp2

(Z2)p1 = Z2 ×
P1
k

Spec(k(p1)) = V (−X0 −X1,−X1 +X2) ⊂ Xp1

(Z2)p2 = Z2 ×
P1
k

Spec(k(p2)) = V (−X0 +X1,−X1 +X2) ⊂ Xp2 .
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For i, j = 1, 2 consider now the diagram where each square is a pullback square

Spec(k) Spec(Rj)

(Zi)p1

∐
(Zi)p2

∼= Spec(k)×S Zi SpecRj ×S Zi Zi

Xp1

∐
Xp2
∼= Spec(k)×S X Spec(Rj)×S X X

Spec k(p1)
∐

Spec k(p2) ∼= Spec k×S P1
k Spec(Rj)×S P1

k P1
k

Spec(k) Spec(Rj) S

/ /

/ / /

From which we see that

(γ0, γ1)∗(Z) = cyclSpec(k)×S X(V (X0−X1, X1+X2)−V (−X0−X1,−X1+X2))

which we can write out in coordinates as

[1 : 1 : −1]− [−1 : 1 : 1]

On the other hand we have that

(τ0, τ1)∗(Z) = cyclSpec(k)×S X(V (X0+X1, X1+X2)−V (−X0+X1,−X1+X2))

which translates to
[−1 : 1 : −1]− [1 : 1 : 1]

thus Z /∈ Cycl(X/S, 0).

Example 2.4.10. Let f : X → P1
k be a smooth integral elliptic surface over

P1
k and let S be as in Example 2.4.9 and let β : P1

k → S be the blow up of S in
the singular point. Consider the morphism β ◦ f : X → S. Let ηX denote the
generic point of X. We will show that ηX /∈ Cycleff (X/S, 1). To this extent
let s be the singular point of S and let p1, p2 ∈ P1

k be the two points in the
fiber β−1(s). The two points p1, p2 give liftings x1, x2 : Spec(k) → P1

k of the
map Spec(k(s)) → S. According to Proposition 2.1.21 it is enough to show
that if X̃ is the strict transform of X (with respect to the blow-up β) then

cyclSpec(k)×S X(Spec(k)×
x1

X̃) 6= cyclSpec(k)×S X(Spec(k)×
x2

X̃).

Note that Xs = (β ◦f)−1(s) is a disjoint union of the two curves Xp1 = f−1(p1)
and Xp2 = f−1(p2) and since any codimension one subscheme of a factorial
scheme is an effective Cartier divisor, it follows that X blown up at Xs is just
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X itself, but then it follows that the proper transform X̃ of X is the graph of
the morphism X → P1

k, that is

X̃ = X P1
k×S X/ , (2.4.3)

thus we have

Spec(k)×
x1

X̃ = Xp1

Spec(k)×
x2

X̃ = Xp2

proving that ηX /∈ Cycleff (X/S, 1). By exactly the same argument one shows
that if C is a smooth curve on X with generic point ηC mapping to the generic
point of S, then ηC /∈ Cycleff (X/S, 0).

2.5 Functoriality of Chow presheaves

Proper push forward

The following definition can be found on p.43 in [SV00].

Definition 2.5.1. Let f : S1 → S2 be a morphism of Noetherian schemes. We
say that a closed subscheme Z of S1 is proper with respect to f if the restriction
of f to Z is a proper morphism. We say that a point s of S1 is proper with
respect to f if the closure of s in S1 which we consider as a reduced closed
subscheme is proper with respect to f .

Let S be a Noetherian scheme and f : X → Y be a morphism of schemes
of finite type over S. Let further Z =

∑
nizi be a cycle on X which lies over

generic points of S. We say that Z is proper with respect to f if all the points
zi are proper with respect to f . We define then a cycle f∗(Z) on Y as the
sum

∑
nimif(zi) where mi is the degree of the field extension k(zi)/k(f(zi))

if this extension is finite and zero otherwise. Note that if g : Y → Z is another
morphism over S such that the cycle

∑
nimif(zi) is proper with respect to g

then (g ◦ f)∗(Z) = g∗(f∗(Z).

The proof of the following theorem is somewhat technical and omitted here.

Theorem 2.5.2 ([SV00, Theorem 3.6.1]). Let S be a Noetherian scheme,
p : X1 → X2 be a morphism of schemes of finite type over S, and f : S′ → S
be a Noetherian scheme over S. Set X ′i := Xi×S S′ (i = 1, 2) and denote
by p′ : X ′1 → X ′2 the corresponding morphism over S′. Let further Z =∑
niZi (resp. W =

∑
mjWj) be an element of Z(Hilb(X1/S, r)) (resp. of

Z(Hilb(X2/S, r))). Assume that the closed subschemes Zi are proper with
respect to p and

p∗(cyclX1
(Z) = cyclX2

(W).
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Then the cycle cyclX′1(Z ×S S′) is proper with respect to p′ and we have

p′∗(cyclX′1(Z ×
S
S′)) = cyclX′2(W×

S
S′).

Lemma 2.5.3. Let S be a Noetherian scheme and X → S be a finite type
morphism. Let Z be an integral closed subscheme of X and let x : Spec(R)→
S be a morphism from the spectrum of a discrete valuation ring. Let i :
Spec(R(0))×S X → Spec(R)×S X be the canonical projection. Then

i∗(cyclSpec(R(0))×S X(Spec(R(0))×
S
Z) = cyclSpec(R)×S X(φx(Z))

Proof. Since φx(Z)→ Spec(R)×S Z is an isomorphism over the generic point
of Spec(R) it follows that the morphism i induces a one to one correspondence
between the generic points of Spec(R(0))×S Z and those of φx(Z). The result
now follows from the general fact that for any scheme T over a scheme V we
have that if v is a point of V then the stalks of the scheme Spec(OV,v)×V T
are isomorphic to stalks of T at points mapping to generalizations of v.

Lemma 2.5.4. Let p : X → Y be a morphism of schemes of finite type over
a Noetherian scheme S. Suppose that Z =

∑
nizi ∈ Cycl(X/S, r) is a cycle

such that the points zi are proper with respect to p and let Zi (resp. Wi) denote
the closure of zi (resp. p(zi)) considered as an integral closed subscheme of X
(resp. of Y ). Suppose that x1 : Spec(R)→ S is a morphism from the spectrum
of a discrete valuation ring mapping the generic point to a generic point of S.

(1) We have that φx1(Zi) is flat and equidimensional of relative dimension r
for all i hence

Z0 :=
∑

niφx1(Zi) ∈ Z(Hilb(X ×
S

Spec(R)/ Spec(R), r)).

(2) Set mi = [k(zi) : k(p(zi))] if this field extension is finite and zero
otherwise, we have that for each i such that mi 6= 0 the morphism
φx1(Wi)→ Spec(R) is flat and equidimensional of relative dimension r,
thus

W0 :=
∑

nimiφx1(Wi) ∈ Z(Hilb(Y ×
S

Spec(R)/Spec(R), r)).

(3) We have the equality

cycl(W0) = (p×
S

Spec(R))∗(cycl(Z0)).

Proof. The first statement is Corollary 2.3.5. To prove (2) it is by Proposition
1.1.23 enough to check that the generic fiber of φx1(Wi)→ Spec(R) is of pure
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dimension r or empty. To this extent let ηi be the generic point of S which zi
lies over. Then we have a map of integral k(ηi)-varieties (Zi)×S Spec k(ηi)→
(Wi)×S Spec k(ηi) and we have

dim(Zi×
S

Spec(k(ηi))) = tr. degk(ηi) k(zi)

dim(Wi×
S

Spec(k(ηi))) = tr. degk(ηi) k(p(zi))

from which it follows that if dim(Wi×S Spec(k(ηi))) < r then mi = 0 and
since relative dimension is stable under base change (2) now follows.

We now prove the final statement. Consider the cycle W =
∑
nimip(zi).

From Lemma 2.5.3 and functoriality of push forward of cycles it is enough to
show that

(p×
S

Spec(R(0)))∗(cycl(
∑

niZi×
S

Spec(R(0)))) = cyclY ×S Spec(R(0))
(
∑

nimiWi×
S

Spec(R(0))).

To this extent let U be an open dense subscheme of Sred such that Zi×S U →
U,Wi×S U → U are flat for all i. We can then consider the relative cycle ZU ∈
Cycl(X ×S U/U, r) which we may view as an element of Z(Hilb(X ×S U/U, r)).
Note that p∗(ZU ) =WU hence by Theorem 2.5.2 it follows that

(p×
S

Spec(R(0)))∗(cycl(
∑

niZi×
S

Spec(R(0))) = (p×
S

Spec(R(0))∗(cyclX ×S Spec(R(0))
(ZU ×

U
Spec(R(0)))

= cyclY ×S SpecR(0)
(WU ×

U
Spec(R(0))) = cyclY ×S Spec(R(0))

(
∑

nimiWi×
S

Spec(R(0))).

Proposition 2.5.5 ([SV00, Proposition 3.6.2]). Let p : X → Y be a morphism
of schemes of finite type over a Noetherian scheme S and Z =

∑
nizi be an

element of Cycl(X/S, r) such that the points zi are proper with respect to p.
Then the following statements hold:

(1) The cycle p∗(Z) on Y belongs to Cycl(Y/S, r). Explicitly we have that if
(x0, x1, R) is a fat point over a k-point of S then

(x0, x1)∗(p∗(Z)) = (p×
S

Spec(k))∗((x0, x1)∗(Z)).

(2) For any morphism f : S′ → S of Noetherian schemes the cycle cycl(f)(Z)
has the form

∑
mjz

′
j where the points z′j are proper with respect to

p′ = p×S S′ and moreover

p′∗(cycl(f)(Z)) = cycl(f)(p∗(Z)).

Proof. Our proof expands slightly on the one found in loc.cit. Let k be a field,
x : Spec(k) → S be a k-point of S and (x0, x1, R) be a fat point of S over x.
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Denote by Zi (resp. Wi) the closure of zi (resp. p(zi)) considered as integral
closed subschemes of X (resp. of Y ). Let Z0,W0 be as in Lemma 2.5.4. It
follows then from this same lemma that cycl(W0) = (p×S Spec(R))∗(cycl(Z0)).
Theorem 2.5.2 implies now that

(x0, x1)∗(p∗(Z)) = cycl(W0 ×
Spec(R)

Spec(k)) =

= (p×
S

Spec(k))∗(cycl(Z0 ×
Spec(R)

Spec(k)) = (p×
S

Spec(k))∗((x0, x1)∗(Z)).

Thus the cycle (x0, x1)∗(p∗(Z)) is independent of the choice of fat point
(x0, x1, R) over x proving (1).

For (2): We first note from Lemma 2.3.15 that the points z′j are proper with
respect to p′. Let further k be a field and let y : Spec(k) → S′ be a k-point
of S′ and x = f ◦ y. Suppose that (y0, y1, A) is a fat point of S′ over y and
(x0, x1, R) a fat point of S over x. We then have from part (1) that

(y0, y1)∗p′∗(cycl(f)(Z)) = (p′×
S′

Spec(k))∗((y0, y1)∗(cycl(f)(Z))

= (p×
S

Spec(k))∗((y0, y1)∗(cycl(f)(Z))

= (p×
S

Spec(k))∗((x0, x1)∗(Z))

= (x0, x1)∗(p∗(Z)).

proving that p′∗(cycl(f)(Z)) satisfies the property defining the cycle cycl(f)(p∗(Z)).

Corollary 2.5.6 ([SV00, Corollary 3.6.3]). Let S be a Noetherian scheme and
f : X → Y be a morphism of schemes of finite type over S. Then there are
homomorphisms:

f∗ : PropCycl(X/S, r)UI → PropCycl(Y/S, r)UI

f∗ : PropCyclequi(X/S, r)UI → PropCyclequi(Y/S, r)UI

f∗ : PropCycleff (X/S, r)UI → PropCycleff (Y/S, r)UI .

If moreover f is proper then we also have homomorphisms

f∗ : Cycl(X/S, r)UI → Cycl(Y/S, r)UI

f∗ : Cyclequi(X/S, r)UI → Cyclequi(Y/S, r)UI

f∗ : Cycleff (X/S, r)UI → Cycleff (Y/S, r)UI .

such that for any composable pair of morphisms X f→ Y
g→ Z of schemes

of finite type over S one has (g ◦ f)∗ = g∗ ◦ f∗.
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Flat pullback

Recall the flat pullback of algebraic cycles from Section 1.7. We will show that
this also behaves well with Chow presheaves.

The following result is stated without proof in [SV00].

Lemma 2.5.7 ([SV00, Lemma 3.6.4]). Let S be a Noetherian scheme and
f : X → Y be a flat equidimensional morphism of relative dimension n of
schemes of finite type over S. Then for any Z ∈ Cycl(Y/S, r) ⊗ Q one has
f∗(Z) ∈ Cycl(X/S, r + n)⊗Q. More precisely we have that for any fat point
(x0, x1) over a k-point of S we have

(f ×
S

Spec(k))∗((x0, x1)∗(Z)) = (x0, x1)∗(f∗(Z))

and hence for any Noetherian scheme g : S′ → S we have

cycl(g)(f∗(Z)) = (f ×
S
S′)∗(cycl(g)(Z)).

Proof. Let Z be an integral closed subscheme of Y and let T denote the scheme
theoretic image of Z in S and η the generic point of T . Note that since the
closed embedding T → S is a monomorphism and Spec(k(η)) → S factors
through T we have Z ×S Spec(k(η)) = Z ×T Spec(k(η)) and (f−1(Z))η =
f−1(Z)×S Spec(k(η)) = f−1(Z)×T Spec(k(η)). From this and flatness we
easily see that cycl(f−1(Z)) =

∑
njwj = cycl((f−1(Z))η). Also note that if

(x0, x1, R) is a fat point over a k-point of S such that x1 maps the generic point
of Spec(R) to η then if Wj denotes the closure of wj in Z then we have

cycl((Wj)η ×
Spec(k(η))

Spec(R(0))) = cycl(φx1(Wj)) ; (2.5.1)

cycl((Z)η ×
Spec(k(η))

Spec(R(0))) = cycl(φx1(Z)). (2.5.2)

Now using Lemma 1.7.2 we easily see that

cycl(
∑

njφx1(Wj)) = cycl(φx1(Z) ×
Z×S Spec(R)

(f−1(Z)×
S

Spec(R))).

Since ∑
njφx1(Wj), φx1(Z) ×

Z×S Spec(R)
(f−1(Z)×

S
Spec(R)))

is an element of

Z(Hilb(f−1(Z)×
S

Spec(R)/Spec(R), r + n))

it now follows from Theorem 2.5.2 that∑
nj cycl(φx1(Wj) ×

Spec(R)
Spec(k))

= cycl(φx1(Z) ×
Z×S Spec(R)

(f−1(Z)×
S

Spec(R)) ×
Spec(R)

Spec(k))
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which by Lemma 1.7.2 is equal to

(f ×
S

Spec(k))∗(cycl(φx1(Z)×
S

Spec(k)))

which now by linearity proves the claim that

(f ×
S

Spec(k))∗((x0, x1)∗(Z)) = (x0, x1)∗(f∗(Z)).

This immediately shows that f∗(Z) ∈ Cycl(X/S, r + n) ⊗ Q and the final
assertion is easily proved using what we have already showed to check that
(f ×S S′)∗(cycl(g)(Z)) satisfies the defining property of cycl(g)(f∗(Z)).

Construction 2.5.8 ([SV00, p.47]). Let S be a Noetherian scheme, f : X →
Y be a flat (resp. flat and proper) equidimensional morphism of relative
dimension n of schemes of finite type over S and F (−,−) be one of the
presheaves Cycl(−,−)UI , Cycleff (−,−)UI and Cyclequi(−,−)UI (resp. one of
the presheaves of proper relative cycles: PropCycl(−,−)UI ,PropCycleff (−,−)UI
and PropCyclequi(−,−)UI). If Z is a cycle on Y which belongs to F (Y/S, r)
then by Lemma 2.5.7 the cycle f∗(Z) belongs to F (X/S, r + n) and this
construction gives us homomorphisms of presheaves

f∗ : F (Y/S, r)→ F (X/S, r + n).

For any composable pair X f→ Y
g→ Z of flat (resp. flat and proper) equidimen-

sional morphisms of schemes of finite type over S we have (g ◦ f)∗ = f∗ ◦ g∗.

Proposition 2.5.9 ([SV00, Proposition 3.6.5]). Let S be a Noetherian scheme.
Consider a pull-back square of schemes of finite type over S of the form:

Y ′ Y

X ′ X

p
′

g

p

f

such that the morphism f is flat and equidimensional of dimension d. Assume
further that either f is also proper and F (−,−) is one of the presheaves
PropCycl(−,−)UI , PropCycleff (−,−)UI , PropCycleff (−,−)UI or that p is
proper and F (−,−) is one of the presheaves Cycl(−,−)UI , Cycleff (−,−)UI ,
Cyclequi(−,−)UI . Then the following diagram of presheaves commutes:

F (Y/S, n) F (Y ′/S, n+ d)

F (X/S, n) F (X ′/S, n+ d)

p∗

g∗

p
′
∗

f∗

Proof. It follows immediately from the definitions and Proposition 1.7.9.
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Comparison with the construction given in [SV96]

The paper [SV96] also introduces a notion of a relative zero cycle. There the
base S is always taken to be a normal algebraic scheme. In this subsection
we will apply the push-forward homomorphisms to show that the pullback of
proper equidimensional zero cycles over normal schemes in the sense of [SV00]
coincides with the pullback constructed in [SV96].

Let us first show that our definition of proper equidimensional relative
cycles of dimension 0 coincides with the definition of relative zero cycles in
op.cit.

Lemma 2.5.10. Let S be a normal integral Noetherian scheme and X → S be
any scheme of finite type over S. Then the group PropCyclequi(X/S, 0) is freely
generated by integral closed subschemes of X which are finite and surjective over
S. In particular if X,S are schemes of finite type over a field k of exponential
characteristic p then in the notation of Section 6 of [SV96] we have

zc0(X)(S) = PropCyclequi(X/ Spec(k))(S)[1/p]

Proof. Since normal schemes are geometrically unibranched Corollary 2.4.4
tells us that PropCycleff (X/S, 0) is the monoid generated by cycles of integral
closed subschemes of X which are proper and equidimensional of relative
dimension 0. The desired result now follows from [Stacks, Tag 02LS].

We will shortly show that for finite cycles over normal algebraic schemes our
base change homomorphisms coincide with those used in [SV96], but we now
first follow [SV00] and introduce a generalization of the latter construction to
an arbitrary normal Noetherian scheme. For an integral scheme X we denote
by k(X) its field of functions.

Definition 2.5.11 ([SV00, Def.3.6.6]). A finite surjective morphism f : Y → S
of integral Noetherian schemes is called a pseudo-Galois covering if the field
extension k(Y )/k(S) is normal and the canonical homomorphism

Aut
S

(Y )→ Aut
k(S)

(k(Y )) = Gal(k(Y )/k(S)) (2.5.3)

is an isomorphism.

Notation 2.5.12 ([SV00, p.48]). Let S be a normal integral Noetherian scheme,
X be an integral scheme and p : X → S be a finite surjective morphism
and assume 3 that there exists a pseudo-Galois covering f : Y → S and
an S-morphism q : Y → X. Let g : S′ → S be any Noetherian integral
scheme over S. Denote by X ′i the irreducible components of X ′ = X ×S S′
and by x′i (resp. x) the generic point of X ′i (resp. of X). Theorem 2.4.2

3It is stated in [SV00] that such a covering always exists. For a Nagata scheme S we can
use a normalization.
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tells us that x ∈ Cyclequi(X/S, 0) and [SV96, Lemma 5.11] shows that each
point x′i lies over the generic point of S′ hence the cycle cycl(g)(x) is of
the form cycl(g)(x) =

∑
nix
′
i with ni ∈ Q. Let G be the Galois group

Gal(k(Y )/k(S)) = AutS(Y ). Denote by Y ′j the irreducible components of
Y ′ = Y ×S S′. [SV96, Corollary 5.10] tells us that G permutes the components
Y ′j transitively so that in particular the field extensions k(Y ′j )/k(S′) are all
isomorphic. Denote by l(i) the number of components Y ′j lying over X ′i and by
l the total number of components Y ′j .

Proposition 2.5.13 ([SV00, Proposition 3.6.7]). Under the assumptions and
notation from Notation 2.5.12 one has:

ni =
[k(X) : k(S)]l(i)

[k(X ′i) : k(S′)]l
.

Proof. We give the same proof as loc.cit. Denote the generic point of Y (resp. of
Y ′j ) by y (resp. by y′j). The cycle y is in Cycl(Y/S, 0) by Theorem 2.4.2 and
has the following obvious properties:

1. f∗(y) = [k(Y ) : k(S)]s where s is the generic point of S.

2. q∗(y) = [k(Y ) : k(X)]x.

3. σ∗(y) = y for any σ ∈ G.

Consider the cycle cycl(g)(y) =
∑
mjy

′
j . Proposition 2.5.5 shows that

(f ×
S
S′)∗(cycl(g)(y)) = [k(Y ) : k(S)]s′

where s′ is the generic point of S′ thus∑
mj [k(Y ′j ) : k(S′)] = [k(Y ) : k(S)].

Moreover for any σ ∈ G we have

(σ×
S
S′))∗(cycl(g)(y)) = cycl(g)(σ∗(y)) = cycl(g)(y).

Since the action of G on the set y′1, . . . , y′l is transitive we conclude that all
multiplicities mj are the same and equal to [k(Y ):k(S)]

l[k(Y ′j ):k(S′)] . Finally

cycl(g)(x) =
1

[k(Y ) : k(X)]
(q×

S
S′)∗(cycl(g)(y))

and hence

ni =
1

[k(Y ) : k(X)]

∑
y′j/x

′
i

mj [k(Y ′j ) : k(X ′i)] =
[k(X) : k(S)]l(i)

[k(X ′i) : k(S′)]l
.
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The following example shows that the pullback of a relative cycle with
integral coefficients may not have integral coefficients.

Example 2.5.14 (Merkurjev). Assume that char k > 0 and let a, b ∈ k× be two
elements independent modulo (k×)p. Set A := k[T0, T1, T2]/(aT p0 + bT p1 − T

p
2 ),

S = Spec(A). One verifies that A is an integrally closed domain so that S is a
normal integral scheme. Let X be the normalization of S in the field k(S)(γ),
where γp = b/a. One can then check that X = Spec(k(α, β)[T1, T2]), where
α, β is a p’th root of a, b respectively, and the image of T0 in k(α, β)[T1, T2]

is α−1T2 − γT1. Note that clearly the map X idX→ X → S is a pseudo-Galois
covering. Set finally S′ = Spec(k) and let S′ → S be the only singular point of
S, that is the point (T0, T1, T2) ∈ Spec(A) = S. The schemeX ′ = Spec(k(α, β))
is irreducible and the multiplicity of the only component of X ′ is given by the
formula

n =
[k(X) : k(S)]

[k(X ′) : k(S′)]
= p/p2 = 1/p. (2.5.4)

Remark 2.5.15. Essentially the same example, but using different arguments
to compute the multiplicities in the base change, is given in [SV00, Example
3.5.10(1)].

Rational equivalence of algebraic cycles

Arguably the most central notion appearing in intersection theory is that
of rational equivalence of algebraic cycles. This notion can both be defined
in terms of orders of vanishing of rational functions or by algebraic cycles
parametrized by the projective line (see [Ful98, Ch.1, Sec.3,Sec.6] respectively).
The latter of these formulations can be (re)stated in the language of relative
cycles as follows:

Definition 2.5.16. Let X → Spec(k) be a scheme of finite type over a field k.
An r-dimensional cycle Z ∈ Cycl(X, r) is rationally equivalent to zero if there
exists a relative effective cycle W ∈ Cycleff (X/ Spec(k), r)(P1

k) such that

Z = cycl(t0)(W)− cycl(t∞)(W), (2.5.5)

where t0 : Spec(k) → P1
k and t∞ : Spec(k) → P1

k denote the usual zero and
infinity points of P1

k.

Cycles rationally equivalent to zero on an algebraic scheme X clearly
form a subgroup Rat(X, r) of Cycl(X, r). The Chow group of r cycles on X
is defined to be the group CH(X, r) := Cycl(X, r)/Rat(X, r). Two cycles
Z1,Z2 ∈ Cycl(X, r) are rationally equivalent if Z1 −Z2 ∈ Rat(X, r).

Proposition 2.5.17. Let f : X → Y be a morphism of schemes of finite type
over a field k. Then the following statements hold true:
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1. If f is proper then
f∗(Rat(X, r)) ⊂ Rat(Y, r) (2.5.6)

2. If f is flat and equidimensional of dimension d then

f∗(Rat(Y, r)) ⊂ Rat(X, r + d) (2.5.7)

Proof. The two statements follow easily from the definitions together with
Corollary 2.5.6 and Lemma 2.5.7.

2.6 Relation with Kollár’s families of cycles

Apart from the Chow presheaves we have already seen due to Suslin and
Voevodsky there are also other theories of presheaves whose sections on Spec(k)
are algebraic cycles on an algebraic scheme over k. In this part we will show
that the theory due to Kollár developed in [Kol96, Ch. I, Sec. 3 and 4] is
strongly related to the theory of relative cycles and chow presheaves which we
have studied earlier in this text.

Since a lot of the notions defined in [SV00] and [Kol96, Ch. I, Sec. 3 and 4]
are very similar, but use different notation we shall save the reader from having
to grasp more notation and mostly stick with the notation and definitions
already given in this text and instead explain how the definitions in [Kol96]
differ from those in [SV00].

Well defined families of proper algebraic cycles

Due to Corollary 2.1.7 we can give the following formulation of [Kol96, Ch. 1,
Def. 3.9]

Definition 2.6.1. Let g : Z → S be a proper morphism of schemes over S
with Z an integral scheme and S a reduced Noetherian scheme. By generic
flatness there is an open subscheme U ⊂ S such that Z is flat over U . Let
f : Spec(R)→ S be a morphism from the spectrum of a discrete valuation ring
such that the image of the generic point is contained in U and let s denote
the image of the closed point. Let φf (Z) denote the closed subscheme of
Z ×S Spec(R) satisfying the properties of Corollary 2.1.7 and let Spec(k) →
Spec(R) be the closed point. The cycle theoretic fiber of g at s along f denoted
by limf→s(Z/S) is defined to be the cycle

lim
f→s

(Z/S) := cyclSpec(k)×Spec(k(s)) Z
(Spec(k) ×

Spec(R)
φf (Z))

Remark 2.6.2. This definition is essentially the same as the pullback along
a fat point. The only difference is a weaker requirement on where f maps
the generic point of the spectrum of the discrete valuation ring and that we
pullback φf (Z) to the closed point of Spec(R) and not to some given field
mapping to the closed point of Spec(R).
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Definition 2.6.3 ([Kol96, Ch. I, Def.3.8]). Let X be an algebraic scheme over
a field k. Let L and K be two field extensions of k. Two cycles

Z ∈ Cycl(XL), W ∈ Cycl(XK)

are said to be essentially the same cycles if for every field F and embeddings
L→ F, K → F we have

Z ⊗L F =W ⊗K F.

If Z is essentially the same as W we shall denote this by

Z ess
= W

Remark 2.6.4. Note that ess= is an equivalence relation.

The following definition is standard.

Definition 2.6.5. Suppose that X is an algebraic scheme over a field k and
we have field extensions k ⊂ F ⊂ K. If Z is an r-cycle on XK we say that Z
is defined over F if there is a cycle ZF ∈ Cycl(XF , r) such that

(ZF )⊗F K = Z

Definition 2.6.6. Let S be a reduced Noetherian scheme and X → S a
morphism of finite type. A well defined familiy of r-dimensional proper algebraic
cycles of X/S is a cycle Z =

∑
aizi on X satisfying the following conditions

(1) The morphism Supp(Z)→ S is proper and equidimensional of dimension
r. In particular letting Zi denote the closure of the points zi (considered
as integral subschemes of X) there is a largest open dense subset U of S
such that all the Zi are flat over U .

(2) For every point s ∈ S letting k(s)Perf denote the perfect closure of the
residue field there exists a cycle

Z∞[s] ∈Cycl((Supp(Z)×
S

Spec(k(s))) ×
Spec(k(s))

Spec(k(s)Perf ), r) ⊂

⊂ Cycl(Xs ×
Spec(k(s))

Spec(k(s)Perf ), r)

satisfying the following property :

For every morphism f : Spec(R) → S from the spectrum of a discrete
valuation ring R mapping the generic point to a point in U and the closed
point to s we have

Z∞[s]
ess
=
∑

ai lim
f→s

(Zi/S).
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The next two results of ours tell us that this definition coincides with the
definition of proper equidimensional relative cycles of dimension r given in
[SV00, Definition 3.1.3] (2.1.11).

Lemma 2.6.7. Let S be a Noetherian scheme and consider a relative cycle
Z =

∑
aizi ∈ Cycl(X/S, r) so ai ∈ Z. Let s ∈ S and let k(s)Perf denote

the perfect closure of the residue field of s. Let Zs be the cycle constructed in
Lemma 2.3.6. Then the cycle

Zs ⊗k(s) k(s)Perf ∈ Cycl(Xs ×
Spec(k(s))

Spec(k(s)Perf )/Spec(k(s)Perf ), r)Q

is an element of Cycl(Xs×Spec(k(s)) Spec(k(s)Perf ), r).

Proof. Let Zi denote the closures of zi with induced reduced subscheme
structure and let S′ → S be a blow-up of Sred such that the proper trans-
forms Z̃i are all flat over S′ (Theorem 1.2.3). Since S′ → S is a surjec-
tive morphism of finite type we can find a finite normal field extension L
of k(s) such that the map Spec(L) → Spec(k(s)) → S admits a lifting to
S′. From Lemma 2.3.7 it follows that Zs ⊗k(s) L has integral coefficients.
Furthermore since the field extension L/k(s) is finite normal it follows from
Lemma 1.4.21 that the extension LGal(L/k(s))/k(s) is purely inseparable and
the extension L/LGal(L/k(s)) is separable. From part (3) of Lemma 2.3.21
it immediately follows that Zs ⊗k(s) L

Gal(L/k(s)) has integral coefficients and
since Spec(k(s)Perf ) → Spec(k(s)) factors through Spec(LGal(L/k(s))) we are
done.

Proposition 2.6.8. Let S be a reduced Noetherian scheme and X → S a
morphism of finite type. Then a cycle Z =

∑
aizi on X is a well defined family

of proper r-dimensional algebraic cycles of X/S in the sense of Definition 2.6.6
if and only if Z ∈ PropCyclequi(X/S, r).

Proof. Suppose Z is a well-defined family of proper r-dimensional algebraic
cycles of X/S. Then it follows by definition that Supp(Z) is proper and
equidimensional of relative dimension r over S. Furthermore if x : Spec(k)→ S
is any k-point of S with image s ∈ S and (x0, x1), (y0, y1) are any two fat points
over x then we clearly have

(x0, x1)∗(Z)
ess
= Z∞[s]

ess
= (y0, y1)∗(Z)

thus
(x0, x1)∗(Z) = (y0, y1)∗Z.

Conversely suppose that Z ∈ PropCyclequi(X/S, r) then part ((1)) of Defi-
nition 2.6.6 is satisfied by definition. For any point s ∈ S we claim that the
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cycle Zs ⊗k(s) k(s)Perf satisfies the property of Z∞[s]. Note first of all that by
Lemma 2.6.7 and Lemma 2.3.15 it follows that

Zs ⊗k(s) k(s)Perf ∈ Cycl((Supp(Z)×
S

Spec(k(s))) ×
Spec(k(s))

Spec(k(s)Perf ), r).

Furthermore if Zi denotes the closure of zi considered as an integral subscheme
of X for each i and U is a dense open subset of S such that all the Zi are
flat over U and let S′ → S be a blow-up of S with center disjoint from U
such that the proper transforms Z̃i are flat over S′ (Theorem 1.2.3) then if
f : Spec(R) → S is a morphism from the spectrum of a discrete valuation
ring taking the generic point to a point in U and the closed point to a point
s ∈ S, then Lemma 2.1.8 immediately yields a lifting Spec(R)→ S′ and letting
x : Spec(k)→ Spec(R) denote the closed point of the scheme Spec(R)∑

ai lim
f→s

(Zi/S) =
∑

ai cyclX ×Spec(k(s)) k
(Spec(k)×

S′
Z̃i)

and so by Lemma 2.3.7 we obtain∑
ai lim
f→s

(Zi/S) = Zs ⊗k(s) k

which is essentially the same as Zs⊗k(s)k(s)Perf . This completes the proof.

In the course of the proof of Proposition 2.6.8 we established the following:

Remark 2.6.9. Let S be a reduced Noetherian scheme andX → S a morphism
of finite type and Z ∈ PropCyclequi(X/S, r). Then Z is a well-defined family
of proper r-dimensional algebraic cycles of X/S and for each point s ∈ S we
have

Z∞[s] = Zs ⊗k(s) k(s)Perf .

Definition 2.6.10. (See [Kol96, Ch. I, Sec. 4 , Def. 4.7]) Let X → S be a
finite type morphism over a reduced Noetherian scheme S and let Z =

∑
aizi

a well defined family of proper r-dimensional algebraic cycles of X/S. We say
that Z satisfies the field of definition condition if for every point s ∈ S the
cycle Z∞[s] is defined over k(s).

Proposition 2.6.11. Under the assumptions and notations of Definition 2.6.10
we have that Z satisfies the field of definition condition if and only if

Z ∈ PropCyclequi(X/S, r)UI

Proof. From Proposition 2.6.8 and Remark 2.6.9 we have that Z ∈ PropCyclequi(X/S, r)
and that

Z∞[s] = Zs ⊗k(s) k(s)Perf

for each s ∈ S which is defined over k(s) for every s ∈ S if and only if
Z ∈ PropCyclequi(X/S, r)UI .
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2.7 Loci of vanishing and effectiveness

In this section we prove that the locus where a given relative cycle is effec-
tive/vanishes is a closed subset of S. As far as we know this result cannot be
found in the literature.

Lemma 2.7.1. Let S be a reduced Noetherian scheme and f : X → S a
morphism of finite type. Consider two elements W1,W2 ∈ N(Hilb(X/S, r)).
Let V1,V2 be two effective cycles on X such that

V1 − V2 = cyclX(W1)− cyclX(W2)

Let further Z be the union of those irreducible components occuring in both
cyclX(W1) and in cyclX(W2) with the same multiplicities and set

U := Supp(W2) \ (Supp(V1) ∪ Z).

If V2 6= 0 then the following assertions are true:

(1) The set U is a non-empty open subset of Supp(W2).

(2) If s ∈ f(U) then the cycle cyclXs(W1×S Spec(k(s)))−cyclXs(W2×S Spec(k(s)))
is not effective. Equivalently if we set Z1 = cyclX(W1),Z2 = cyclX(W2)
then the relative cycle (Z1)s − (Z2)s = (Z1 −Z2)s (see Lemma 2.3.19) is
not effective.

(3) The set f(U) is an open subset of S.

Proof. It is clear that U is an open subset of Supp(W2) and since V2 6= 0
and Supp(cyclX(W2)) is equidimensional of dimension r over S it follows that
Supp(W2) * Supp(V1)∪Z thus (1) follows. For (2) consider any element u ∈ U
and set s = f(u) ∈ f(U) ⊂ S. Note that since u /∈ Supp(V1)∪Z it follows that
u ∈ Supp(V2). Let V1 = cycl(

∑
aiZi) and V2 = cycl(

∑
bjZj) where Zi, Zj

are integral schemes and let S′ → S be a blow-up of S such that the proper
transforms Z̃i, Z̃j are flat over S′ for all i, j. Let j be such that u ∈ Zj then
since Z̃j → Zj is surjective we can find some ũ ∈ Z̃j mapping to u ∈ Zj and
let s′ be the image of ũ in S′. By Lemma 2.3.7 we have that

(V1 − V2)s ⊗k(s) k(s′) =∑
ai cyclX ×S Spec(k(s′))(Z̃i×

S′
Spec(k(s′)))−

∑
bj cyclX ×S Spec(k(s′))(Z̃j ×

S′
Spec(k(s′))).

Note that since u is not in the image of any of the maps Z̃i×S′ Spec(k(s′))→
(Zi)s but ũ ∈ Z̃j ×S′ Spec(k(s′)) for some j it follows that (V1−V2)s⊗k(s) k(s′)
cannot be effective and since the pullback of an effective relative cycle must
necessarily be effective it follows that (Z1)s − (Z2)s is not effective which
completes the proof of (2). The last assertion follows easily from [Stacks, Tag
0CVT].
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Corollary 2.7.2. Let S be a reduced Noetherian scheme and f : X → S a
morphism of finite type. Consider two elements W1,W2 ∈ N(Hilb(X/S, r)).
The set of points s ∈ S such that

cyclXs(W1×
S

Spec(k(s)))− cyclXs(W2×
S

Spec(k(s)))

is an effective cycle on Xs is a closed subset of S.

Proof. By Lemma 2.3.19 it is enough to show that the set

EffS(Z) = {s ∈ S | Zs is an effective cycle on Xs},

where Z := cyclX(W1)− cyclX(W2) ∈ Cycl(X/S, r), is a closed subset of S.
If Z is not already an effective cycle on X it follows from Lemma 2.7.1 that

there is a closed subset S1 ( S where EffS(Z) ⊂ S1. We can consider the set
S1 as a reduced closed subscheme of S and we denote the closed embedding
i1 : S1 → S. Then we can consider the pullback

cycl(i1)(Z) = cyclS1×S X(W1×
S
S1)− cyclS1×S X(W2×

S
S1);

if this is not an effective cycle we can repeat the procedure and we obtain a
descending chain of closed subschemes

S ) S1 ) S2 ) . . . .

Since S is a Noetherian topological space it follows that the aforementioned
sequence must stabilize at some SN which means that

cyclX ×S SN (W1)− cyclX ×S SN (W2)

is an effective cycle and EffS(Z) = SN .

Recall from Lemma 2.3.13 that if p : S′ → Sred → S is a blow-up of Sred

making the proper transforms Z̃i flat over S′ then one has that

cycl(p)(Z) =
∑

ai cycl(Z̃i).

This allows us to prove the last few results of this section.

Proposition 2.7.3. Let S be a Noetherian scheme and f : X → S a scheme of
finite type over S. Let F be either of the presheaves Cycl(X/S, r)Q,Cycl(X/S, r)UI
and let F eff denote its respective effective counterpart. For a relative cycle
Z =

∑
aizi ∈ F (S) the set

EffS(Z) = {s ∈ S |Zs ∈ F eff (Spec(k(s)))}

is a closed subset of S.

96



Proof. Let Zi be the closure of the point zi and let S′ → Sred → S be a
blow-up of Sred such that the proper transforms Z̃i are flat over S′. As
cycl(p)(Z) =

∑
ai cycl(Z̃i) ∈ Z(Hilb(X ×S S′/S′, r)) it follows immediately

from Corollary 2.7.2 that EffS′(cycl(p)(Z)) is a closed subset of S′. Since p is
proper it is therefore enough to prove that

EffS(Z) = p(EffS′(cycl(p)(Z))).

It follows from functoriality that if s ∈ EffS(Z) then for any point s′ ∈ S′ lying
over s we must have that (cycl(p)(Z))s′ ∈ F eff (Spec(k(s′))) thus EffS(Z) ⊂
p(EffS′(cycl(p)(Z))). Conversely if s /∈ EffS(Z) then if s′ ∈ S′ is any point
lying over s then from functoriality and Lemma 2.3.19 we have

(cycl(p)(Z))s′ = Zs ⊗k(s) k(s′)

and it is clear that the right hand side is not an effective cycle, thus s /∈
p(EffS′(cycl(p)(Z))) which completes the proof.

Proposition 2.7.4. Let S be a Noetherian scheme and f : X → S a scheme of
finite type over S. Let F be either of the presheaves Cycl(X/S, r)Q,Cycl(X/S, r)UI .
For a relative cycle Z =

∑
aizi ∈ F (S) the set

NullS(Z) = {s ∈ S | Zs = 0 ∈ F (Spec(k(s)))}

is a closed subset of S.

Proof. Note that NullS(Z) = EffS(Z)∩EffS(−Z) and apply Proposition 2.7.3.

2.8 An overview of the literature

Since this chapter has a lot of overlap with [SV00] we have provided a table
explaining how our presentation of the material taken from op.cit. (and other
sources) compares to the original.
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Comparison table
Statement Reference(s) Statement

compari-
son

Proof

Lemma 2.1.2 [GD61, (7.1.7)] Translation Translation
Lemma 2.1.6 [GD67, (2.8.5)] Translation Sketch
Proposition 2.1.18 [SV00,

Cor.3.1.6]
Identical Different

Proposition 2.1.21 [SV00,
Prop.3.1.5]

Identical Identical

Corollary 2.2.2 [SV00,
Cor.3.2.4]

Correction Corrects and ex-
pands

Theorem 2.3.1 [SV00,
Thm.3.3.1]

Identical Occasionally
expands

Lemma 2.3.12 [SV00, p.30] Identical Added
Lemma 2.3.15 [SV00,

Lem.3.3.6]
Identical Identical

Lemma 2.3.18 [SV00,
Lem.3.3.8]

Identical Slight expansion

Lemma 2.3.19 [SV00,
Lem.3.3.10]

Corrected

Lemma 2.3.20 [SV00,
Lem.3.3.12]

Identical Added

Lemma 2.3.21 [SV00,
Lem.3.3.9]

Identical Slightly different

Lemma 2.3.24 [SV00,
Cor.3.3.11]

Corrected

Theorem 2.4.2 [SV00,
Thm.3.4.2]

Identical Identical

Proposition 2.5.5 [SV00,
Prop.3.6.2]

Identical Slight expansion

Lemma 2.5.7 [SV00,
Lem.3.6.4]

Identical Added

Proposition 2.5.13 [SV00,
Prop.3.6.7]

Identical Identical

Example 2.5.14 [SV96, p.77] Identical Identical
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Chapter 3

The h-topologies

A fundamental tool in the study of relative cycles is the h-topology, a Grothendieck
topology on the category of schemes with more coverings than what one en-
counters in other areas of algebraic geometry. This means that a presheaf has
to allow its sections to be glued together in rather many ways for it to be
a sheaf in the h-topology. As one might expect being a sheaf in such a fine
topology is a potential obstruction to representability by a scheme. On the
other hand if one has a sheaf in the h-topology one then has a nice set of tools
to prove the existence of sections with desirable properties.

The layout of this chapter is as follows: First we introduce the h and qfh
topologies and discuss their basic properties closely following [Voe96]. Notably
we recall Voevodsky’s proof that an h-covering of a Noetherian Nagata scheme
can be refined to a Zariski covering followed by a proper surjective map. As
an application of the limit methods from the first chapter we show that the
Nagata hypthesis is not necessary1. We then follow this up by giving some
consequences of the refinement result. We also briefly discuss a few cousins of
the h-topology where one has more control over field arithmetic, before moving
on to studying presheaves of relative cycles in the context of the h-topologies
essentially following [SV00].

Finally in the last section we recall from [SV96] how sheaves in the qfh-
topology interact with quotients by finite groups.

Throughout this chapter every scheme is separated.

3.1 The h topology

(Universal) Topological epimorphisms

Definition 3.1.1 ([Voe96, Def.3.1.1]). A morphism of schemes p : X → Y is
called a topological epimorphism if the underlying topological space of Y is a

1This fact is already known as it also follows from Rydh’s more general refinement result
concerning subtrusive covers. See [Ryd10, Thm. 3.12, Thm. 8.4].
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quotient space of the underlying topological space of X. That is , p is surjective
and a subset U of Y is open if and only if p−1(U) is open in X.

A topological epimorphism p : X → Y is called a universal topological
epimorphism if for any morphism f : Z → Y the projection Z ×Y X → Z is a
topological epimorphism.

Remark 3.1.2. In the terminology of [Gro71] topological epimorphisms are
(instead) called submersive and the universal topological epimorphisms are
called universally submersive.

Example 3.1.3.

1. Using only point-set topology, we see that any open or closed surjective
morphism is a topological epimorphism.

2. Since any flat morphism locally of finite presentation is universally open
(See [Stacks, Tag 01UA]) and since surjectivity is stable under base change,
we see that surjective flat morphisms locally of finite presentation are
universal topological epimorphisms (This is also the case for surjective
quasi-compact flat morphisms, see [Stacks, Tag 02JY]).

3. Proper morphisms are by definition universally closed, hence surjective
proper morphisms are universal topological epimorphisms.

The following Lemma is straight forward.

Lemma 3.1.4. Any composition of (universal) topological epimorphisms is a
(universal ) topological epimorphism.

The h-topology

Definition 3.1.5 ([Voe96, Def. 3.1.2]). The h-pre-topology is the Grothendieck
pre-topology on the category of schemes with coverings of the form {pi : Ui →
X} where {pi} is a finite family of morphisms of finite type such that the
induced morphism

∐
Ui → X is a universal topological epimorphism. If we

in addition require the pi to be quasi-finite then we get the coverings of the
qfh-pretopology.

The h-topology (resp. qfh-topology) is the Grothendieck topology associ-
ated to the h-pre-topology (respectively the qfh-pre-topology).

Example 3.1.6.

1. It follows immediately from the definitions that a coproduct of flat
morphisms is flat, hence any flat covering (of finite presentation) is an
h-covering. Moreover if a scheme S is quasi-compact and quasi-separated
then it follows easily from Theorem 3.1.14 that a flat covering of S is a
covering in the saturation of the qfh-pretopology (See Definition D.2.2).
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2. Since open embeddings are flat, it follows from (1) that open finite
coverings are h-coverings, hence on the category of Noetherian schemes
the Zariski-topology is coarser than the h-topology.

3. Any surjective proper morphism is an h-covering.

4. Since the fibered product of a coproduct with a scheme over some other
scheme, is the coproduct of the fibered products, we see that if {fi :
Ui → X}i∈I is a jointly surjective finite family of proper morphisms, then
this is an h-covering. In particular jointly surjective families of closed
embeddings amd finite morphisms are h-coverings.

5. Consider the affine plane A2
k. Let C = V (y) denote the x-axis and let U

be the complement A2
k \ C = D(y). The canonical morphism

π : U
∐

C → A2
k

is clearly surjective, however π−1(C) is open while C is not open, hence
π is not an h-covering.

6. By blowing up the affine plane at the origin and then removing a point
from the exceptional divisor we get a morphism p : U → X which can be
shown to be surjective but not a topological epimorphism. This counter
example is a special case of Corollary 3.1.9 below.

Example 3.1.7. Consider the two k-algebra maps φ1, φ2 : k[t] → k[t]/(t2)
where the first is the canonical quotient and φ2 is given by t 7→ 0. When we
compose either of these two maps with the canonical map q : k[t]/(t2)→ k we
get the map k[t]→ k given by t 7→ 0. This shows that

HomSch /k(Spec(k[t]/(t2)),A1
k)→ HomSch /k(Spec(k),A1

k)

is not injective as we have Spec(φ1) ◦ Spec(q) = Spec(φ2) ◦ Spec(q). Note
however that the closed embedding Spec(q) : Spec(k) → Spec(k[t]/(t2)) is a
qfh-covering, thus the presheaf hA1

k
is not a sheaf in the qfh-topology. Which

implies that both the qfh and the h topologies are not subcanonical.

Part (5) of 3.1.6 is a consequence of the following more general statement:

Proposition 3.1.8 ([Voe96, Proposition 3.1.3]). Let {Ui
pi→ X} be an h-

covering of a Noetherian scheme X. Denote by
∐
j Vj the disjoint union of

irreducible components of
∐
Ui such that for any j there exists an irreducible

component Xi of X which is dominated by Vj. Then the morphism q :
∐
Vj → X

is surjective.
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Proof. We recall the proof from loc.cit. Suppose first that X is irreducible. Let
x ∈ X be a point of X. We want to prove that x lies in the image of q. By
considering the base change along the natural morphism Spec(OX,x)→ X, we
may suppose that X is the spectrum of a local ring and x is the closed point
of X.

Denote by Z the closure of the image Z ′ of those irreducible components of∐
Ui which are not dominant over X. Since Z ′ is a constructible subset of X

by Chevalley’s theorem ([Stacks, Tag 054J]), we have that Z ′ =
∐
k U
′
k ∩ Ck

where U ′k are open and Ck are closed. Hence we have that

Z = Z ′ =
⋃
k

U ′k ∩ Ck ⊂ ∪Ck

and since Z ′ does not contain the generic point, none of the Ck contain the
generic point, thus

Z ( X.

From [GD67, (10.5.5) (i)] we have that the set of points x in X such that {x}
is finite, is a dense subset X0 of X. Note that since we are working in the
spectrum of a local ring it follows that the closure of one-dimensional points
consists of two points, hence the set of one dimensional points is contained in
X0. Now if x0 is in X0, then we have that {x0} is finite and by [GD67, (10.5.3)]
this implies that the dimension of {x0} is less than or equal to one, hence the set
X0 is exactly the set of one dimensional points and the closed point, and so we
have that the set of one-dimensional points of X is dense in X. Therefore there
exists a one-dimensional point y ∈ X which does not belong to Z. If x does
not lie in the image of q then we have q−1({y}) = q−1({y} ∪ {x}) = q−1({y})
and so q−1({y}) is closed which implies that p−1

i ({y}) is closed as well but {y}
is not closed in X, giving us a contradiction that {pi} is an h-covering.

Suppose now that X is an arbitrary scheme and let Xred = ∪Xk be the
decomposition of the maximal reduced subscheme of X into the union of its
irreducible components. Consider the natural morphism Xk → X and let
{Ui ×X Xk → Xk} be the preimages of our h-covering. Then the morphisms∐
Vj,k → Xk, where Vj,k are the irreducible components of

∐
Ui ×X Xk which

are dominant over Xk are surjective, implying that
∐
Vj → X is surjective

since
∐
Vj =

∐∐
Vj,k.

Corollary 3.1.9 ([Voe96, Rmk after 3.1.3]). Let Z be a closed subscheme of
an integral scheme X and b : XZ → X the blow up with center Z. Suppose
that for an open subscheme U ↪→ XZ , the composition U → XZ → X is an
h-covering. Then U = XZ .

Proof. We expand on the explanation given in loc.cit. Consider the base
change along the projection XZ → X, XZ ×X XZ . Now since b is a birational
morphism we have some open subset V of X such that b−1(V ) → V is an
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isomorphism and b−1(V ) ∼= b−1(V )×X b−1(V ) ↪→ XZ ×X XZ . Thus the closure
of b−1(V ) ×X b−1(V ) in XZ ×X XZ denoted by T , is the unique irreducible
component of XZ ×X XZ dominating XZ . Now we claim that T is contained
in the diagonal ∆. To see this, just note that the diagonal morphism ∆XZ/X

restricted to b−1(V ) yields the isomorphism b−1(V ) ∼= b−1(V )×X b−1(V ), hence
the diagonal is a closed subscheme containing T . Now from this it follows from
Proposition 3.1.8 that (U ×X XZ) ∩∆→ XZ is a surjection, and so we must
have U = XZ .

In the case where X is an irreducible geometrically unibranched scheme
(this is the case whenever X is normal and connected) Proposition 3.1.8 has a
converse.

Proposition 3.1.10 ([Voe96, Prop. 3.1.4]). Let {pi : Ui → X} be a finite
family of quasi-finite morphisms over an irreducible geometrically unibranced
Noetherian scheme X. Then {pi} is a qfh-covering if and only if the subfamily
{qj} consisting of those pi which are dominant over X is such that

∐
qj is

surjective. In that case {qj} is also a qfh-covering of X.

Proof. The "only if" part follows immediately from Proposition 3.1.8. The "if"
part follows easily from Proposition 1.1.20 Item 3.

Refinements of qfh-coverings

Let us recall the following theorem due to Grothendieck:

Theorem 3.1.11 (Zariski’s main theorem). Let f : X → S be a quasi-finite
and separated morphism of schemes2 and suppose that S is quasi-compact and
quasi-separated. Then there exists a factorization

X T

S

f

◦
j

π
(3.1.1)

where j is a quasi-compact open embedding and π is finite.

Proof. See [GD67, Corollary (18.12.13)] or [Stacks, Tag 05K0].

As one might expect, Zariski’s main theorem can be used to give neat
refinements of qfh-coverings. In the case of Nagata schemes this is done in
[SV96, Lemma 10.3]. Using the methods from Section 1.8 we can in fact remove
the Nagata hypothesis.

2Recall that we are assuming all schemes to be separated anyway, so we could have
omitted writing this assumption.
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Proposition 3.1.12. Let Y ∈ Sch /S be a Noetherian scheme and

{pj : Yj → Y }j∈J

a qfh-covering. Then there exists a refinement of the form

{Y ′i → Y ′
p→ Y }i∈I (3.1.2)

where {Y ′i → Y ′}i∈I is a Zariski covering and p : Y ′ → Y is finite surjective.

Proof. If {Zk}rk=1 denotes the irreducible components of Y then since the
morphism

∐
Zk → Y is finite surjective, it is enough to prove that the statement

of the proposition for the covering obtained by base change to an arbitrary
irreducible component of Y . In other words we can assume that Y is an integral
Noetherian scheme.

Let {Vl}l∈L denote the set of irreducible components Vl of some Yj such
that Vl dominates Y . Since the morphisms Vl → Yj → Y are quasi-finite and
separated it follows from Zariski’s main theorem (Theorem 3.1.11) that there
exists a factorization of the form

Vl Vl Y◦
πl (3.1.3)

where the first map is an open embedding and πl is finite surjective. Let E
be the normal closure of the composite of all the extensions k(Vl)/k(Y ) and
let ν : W → Y denote the normalization of Y in the morphism Spec(E)→ Y .
Further let Y n denote the normalization of Y and using Lemma 1.8.10 we write
Y n as

Y n = lim
θ
Yθ (3.1.4)

with Yθ → Y finite and birational. Consider the covering of Yθ obtained by
base change

{Yj ×
Y
Yθ → Yθ}j∈J (3.1.5)

and for any irreducible component Vlθ of some (Yj ×Y Yθ) dominating Yθ apply
Zariski’s main theorem again to obtain a factorization of the form

Vlθ Vlθ Yθ.◦
πlθ (3.1.6)

Now since the map Yθ → Y is birational it follows that if we let {Vlθ} denote
the set of irreducible components Vlθ of some Yθ ×Y Yj dominating Yθ then the
sets {Vlθ} and {Vl} have the same finite cardinality. Moreover for every such
Vlθ there is some Vl with the same function field. Thus applying [Stacks, Tag
035I] we get surjective integral Y -morphisms

φlθ : W → Vlθ , νN : W → Y n, νθ : W → Yθ (3.1.7)
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fitting into the following commutative diagram:

Vlθ

W Y n Yθ.

πlθ

φlθ

νN

νθ

(3.1.8)

Now for each lθ (here we consider all θ) set

Wlθ := φ−1
lθ

(Vlθ). (3.1.9)

Letting G = AutK(Y )(E) it follows from the universal property of normalization
in E that G-acts on Yθ-automorphisms of W for every θ. For each σ ∈ G we
set

Wlθ,σ := σ(Wlθ). (3.1.10)

Note that since G acts on Yθ-automorphisms for every θ the following diagram
is commutative

Wlθ,σ W Yθ

Wlθ,σ W W Vlθ Yθ

◦

id

νθ

id

◦ σ−1 φlθ πlθ

(3.1.11)

Furthermore by construction the composition given in the bottom row factors
through the following composition

Vlθ Vlθ Yθ.◦
πlθ (3.1.12)

in particular the map Wlθ,σ → Y must necessarily factor through one of the
pj . Since the map ν : W → Y is integral we can by Lemma 1.8.9 write it as a
directed limit

W = lim
λ
Wλ (3.1.13)

with Wλ → Y a finite morphism. Since πlθ is of finite presentation over Y it
follows from Proposition 1.8.8 that for any σ ∈ G there is some λ such that
the map φlθ ◦ σ−1 : W → Vlθ factors as the projection W →Wλ followed by a
map φλ : Wλ → Vlθ . Furthermore by Lemma 1.8.7 and using that the limit is
directed we can also assume that there is some open subset U of Wλ, such that

Wlθ,σ = U ×
Wλ

W. (3.1.14)

Thus it follows that the composition U →Wλ → Y factors through one of the
pj . Observe that since all the projections W →Wλ are surjective and the limit
W = limWλ is directed we could conclude the proof if we knew that W could
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be covered by finitely many of the Wlθ,σ. In fact since W is quasi-compact
(being given as an integral morphism to a Noetherian scheme) it is enough to
prove the equality

W = ∪Wlθ,σ. (3.1.15)

By [Bou64, Ch.5, Sec. 2, n.3, Prop. 6] we have that G acts transitively on
the (set theoretic) fibers of νN . Hence in order to prove the claimed equality
it is enough to show that every fiber of νN intersects one of the Wlθ . To this
extent pick an arbitrary y′ ∈ Y n. By Lemma 1.8.10 we have some θ and an
y′θ ∈ Yθ such that y′ is the only point of Y n lying over y′θ. Furthermore by
Proposition 3.1.8 the element y′θ is in the image of at least one of the maps
πlθ |Vlθ thus if v ∈ Vlθ lies over y′θ then νN must necessarily map the fiber
φ−1
lθ

({v}) to y′ completing the proof.

Remark 3.1.13. Proposition 3.1.12 is a special case of [Ryd10, Theorem
3.11] which is a generalization to the case of quasi-finite universally subtrusive
morphisms. Our proof is much more similar to Voevodsky’s original in the
Nagata case.

Refining h-coverings

Theorem 3.1.9 of [Voe96] states that an h-covering of a Noetherian excellent3

scheme has a refinement of the form

{Ui → U → V → Xred → X}i∈I (3.1.16)

where {Ui → U}i∈I is an open covering of U and U → V is finite surjective,
V → Xred is a blow-up of Xred in a closed subscheme and Xred → X is the
obvious closed embedding. The proof reduces to the case of qfh-coverings
which is where Voevodsky uses the excellency/Nagata assumption, however as
we saw in Proposition 3.1.12 we do not need the Nagata hypothesis. In order
to prove Voevodsky’s theorem we need the following result which tells us that
a faithfully flat morphism can be refined by a qfh-covering.

Theorem 3.1.14. Suppose that f : X → S is a faithfully flat morphism
locally of finite presentation. Then there exists a morphism g : S′ → S which
is faithfully flat, locally of finite presentation and locally quasi-finite and an
S-morphism S′ → X factorizing g together with f . If S is quasi-compact
(resp. quasi-compact and quasi-separated which in particular is the case if S
is Noetherian), then S′ can be taken to be an affine scheme (resp. S′ can be
taken to be affine and g can be taken to be quasi-finite).

Proof. See [GD67, Corollaire 17.16.2].
3The reader not familiar with this notion need not worry, all that is needed is that such

schemes are Nagata, and we will actually see that this assumption is not necessary.
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Remark 3.1.15 (Fun implication). Hilbert’s Nullstellensatz may be stated as
follows: For any finite type morphism X → Spec(k) where X is a scheme over
a field k , there exists a finite field extension k′/k and a morphism of k-schemes
Spec k′ → X.

As quasi-finite morphisms over a field are finite we get the Nullstellensatz
as a special case of Theorem 3.1.14.4

Theorem 3.1.16. Let Y be a Noetherian scheme. Then any h-covering {Yj →
Y }j∈J has a refinement of the form

{Y ′i → Y ′
p→ Y }i∈I (3.1.17)

where {Y ′i → Y ′}i∈I is a Zariski covering and p : Y ′ → Y is a proper cover.
Furthermore the map p : Y ′ → Y factors as a finite surjective morphism
Y ′ → Y ′′ followed by a blow-up Y ′′ → Yred followed by the closed embedding
Yred → Y .

Proof. Proposition 3.1.12 makes it possible to run the original proof due to
Voevodsky which we now recall:

Suppose that {pj : Yj → Y }j∈J is an h-covering of Y . Since the evident
map Yred → Y is an h-covering base change allows us to reduce to the case
where Y is reduced. By [Stacks, Tag 052B] there is a dense open subscheme
Y0 of Y such that the morphism

∐
j pj :

∐
Yj → Y is flat over Y0 (hence pj is

also flat over Y0). Now from Theorem 1.2.3 we can find a closed subscheme Z
disjoint with Y0 such that if YZ denotes the blow-up with center Z then the
strict transform ˜(

∐
Yj) is flat over YZ or in other words the composition

f : ˜(
∐
Yj) YZ ×Y (

∐
Yj) YZ/ (3.1.18)

is flat. Let C denote the scheme theoretic closure of the complement of the
strict transform ˜(

∐
Yj) in YZ ×Y

∐
Yj and note that the following set of maps

{f, C → YZ} (3.1.19)

is an h-covering of YZ . Note that since the closed embedding

˜(
∐
Yj) YZ ×Y (

∐
Yj)/ (3.1.20)

is an isomorphism over the generic points of YZ it follows then from Chevalley’s
Theorem ([Stacks, Tag 054J]) and [Stacks, Tag 005K] that C cannot dominate
any irreducible component of YZ thus by Proposition 3.1.8 it follows that f
is faithfully flat (hence an h-covering by Example 3.1.6 Item 1). We can now
apply Theorem 3.1.14 to obtain a faithfully-flat quasi-finite morphism U → YZ

4This example is also given in [Mil80].
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which factors through f . By considering the preimages of Yj in U which we
denote by Uj we thus obtain a refinement of the original covering of the form

{Uj → U → YZ → Y }j∈J (3.1.21)

such that
{Uj → U → YZ}j∈J (3.1.22)

is a qfh-covering of the Noetherian scheme YZ . Proposition 3.1.12 now allows
us to conclude the proof.

Remark 3.1.17. Theorem 3.1.16 can also be deduced from the more general
result [Ryd10, Thm. 3.12] (see also [Ryd10, Thm. 8.4]).

Applications of the refinement result

A first immediate corollary of Theorem 3.1.16 is re-obtaining a Theorem
originally proved by Goodwillie in [GL01];

Corollary 3.1.18 (Goodwillie). Let X be a Noetherian scheme. Then every
universal topological epimorphism U → X of finite type is a ph-cover5

We also obtain another proof of the following useful known result:

Lemma 3.1.19 ([Gro71, Exp. IX, Prop.2.4], [SV00, Lem. 4.1.3]). Let S be
a Noetherian scheme and p : X → S a scheme of finite type over S. Suppose
that there is an h-covering f : S′ → S such that the scheme X ′ = X ×S S′ is
proper over S′. Then X is proper over S.

Proof. If S′ → S is an h-covering such that X ′ → S′ is proper then since
the property of being proper is local on the target it follows easily from
Theorem 3.1.16 that there is an h-covering X → X such that the composition
X → X → S is proper. From this it follows that X → S must be proper.

Another nice application of the refinement result is the following character-
isation of universal topological epimorphisms of finite type which can also be
deduced by other means:

Proposition 3.1.20 ([Gro71, Exp. IX, Rem. 2.6], [Ryd10, Cor. 2.10]). Let S
be a Noetherian scheme and f : X → S a morphism of finite type. Then the
following statements are equivalent.

1. The morphism f is an h-covering.

5The ph topology is the topology generated by Zariski covers and proper surjections.
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2. For any discrete valuation ring R and diagram of solid arrows

Spec(R′) X

Spec(R) S

(3.1.23)

there is a discrete valuation ring R′ and morphisms making the diagram
commutative and such that the left vertical morphism is surjective.

Proof. If f is an h-covering then it follows easily from Theorem 3.1.16 and
Lemma 1.3.12 that for any morphism Spec(R)→ S with R a discrete valuation
ring the diagram given in (3.1.23) can be filled with R′ a discrete valuation
ring and Spec(R′)→ Spec(R) being surjective.

To prove the converse statement note that it is enough to prove the weaker
statement that if (2) holds then f is necessarily a topological epimorphism
since property (2) is obviously preserved by base change. To this extent
suppose for the sake of contradiction that (2) holds but f is not a topological
epimorphism. Then we have a non-open subset U of S such that f−1(U) is
open. By assumption the morphism f is obviously surjective and it follows
from [Stacks, Tag 054J] that U = f(f−1(U)) is a constructible subset which is
not open hence it cannot be stable under generalization ([Stacks, Tag 0542]).
Thus there is a point s′ ∈ U and a point s ∈ S \ U such that s′ is contained in
the closure of the point s. By Corollary 2.1.3 we can find a discrete valuation
ring R and a map Spec(R)→ S such that the generic point of Spec(R) maps to
s and the closed point maps to s′. By assumption there exists a commutative
diagram

Spec(R′) X

Spec(R) S

where the image x of the generic point of Spec(R′) in X is a generalization
of the image of the closed point which by assumption is contained in f−1(U).
Since this set is open it follows that we must have x ∈ f−1(U) hence s ∈ U
giving the desired contradiction.

Remark 3.1.21. One can in fact avoid Theorem 3.1.16 and work with the
definition of the h-topology to deduce both Lemma 3.1.19 and Proposition 3.1.20.
However we find the proofs slightly easier using Theorem 3.1.16.

Proposition 3.1.20 gives further means of checking flatness of morphisms:

Proposition 3.1.22 (h-topological criterion for flatness). Let S be a reduced
Noetherian scheme and f : X → S be a morphism locally of finite type. If there
exists an h-covering S′ → S such that the induced morphism f ′ : S′×S X → S′

is flat then f is flat.
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Proof. Suppose that S′ → S is an h-covering making the induced map f ′ :
S′×S X → S′ flat. To show that f is flat it is by Theorem 1.3.14 enough to
show that if Spec(R)→ S is any morphism from a discrete valuation ring then
the induced map XR = X ×S Spec(R) → Spec(R) is flat. Given such a map
Spec(R)→ S we apply Proposition 3.1.20 to obtain a diagram

Spec(R′) S′

Spec(R) S

g (3.1.24)

with R′ a discrete valuation ring and g surjective. By Lemma 1.3.8 the map g
is faithfully flat and by assumption XR′ = X ×S Spec(R′)→ Spec(R′) is flat
hence we can apply [Stacks, Tag 036K] to conclude that XR = X ×S Spec(R)→
Spec(R) is also flat.

Remark 3.1.23. Proposition 3.1.22 is essentially a special case of [Pic86, Prop
II.21, page 584].

Cousins of the h-topology

Throughout the literature there are many coarser variants of the h-topology
which provide more control over the field arithmetic. To name a few one has
the cdh-topology introduced in [SV00], the rh topology from [GL01] and the
eh-topology found in [Gei06]. These topologies are slightly more awkward to
define, and in fact for the purposes of this thesis it will be enough to only
describe the finest sub-topology of the h-topology where points have liftings
inducing separable field extensions. We will now begin to describe this topology
in a more precise manner.

Definition 3.1.24. A morphism of schemes f : X ′ → X satisfies the separable
lifting condition if for every point x ∈ X there is a point x′ ∈ f−1(x) such that
the induced map of residue fields k(x)→ k(x′) is a separable field extension.

Lemma 3.1.25. The separable lifting condition is preserved under composition
and stable under base change.

Proof. The first statement follows from Lemma 1.4.13 and the second from
Lemma 1.4.14.

Definition 3.1.26. The sd-h pre-topology on the category of schemes is the
pre-topology where coverings {pi : Xi → X}i∈I are h-coverings such that the
induced morphism ∐

i∈I
Xi → X (3.1.25)

satisfies the separable lifting condition.

110

https://stacks.math.columbia.edu/tag/036K


Remark 3.1.27. It can be shown that if the separable lifting condition holds
for a morphism X ′ → X of finite type, then the point x′ over x can in fact
be chosen such that the induced extension of residue fields is finite separable.
Furthermore we expect our sd-h topology to coincide with the sdh-topology
introduced in [HKK17]. The sdh topology is the coarsest saturated topology
containing étale covers and proper surjective morphisms p : X ′ → X such that
for every x ∈ X there is a point x′ ∈ X ′ such that the induced map of residue
fields k(x)→ k(x′) is a finite separable extension.

For the rest of this Chapter we restrict the h, qfh and sd-h topologies to the
category of Noetherian schemes over a fixed Noetherian scheme S. This means
that we only consider those coverings which are sets of morphisms of Noetherian
S-schemes. All results proved so far (such as for instance Theorem 3.1.16) are
still valid in this setup.

3.2 Chow sheaves in the h-topologies

Many of the Chow presheaves defined in 2.3 are actually sheaves in one of the
h-topologies (h,qfh or sd-h). We start by showing that Cycl(X/S, r)Q is a
separated presheaf with respect to the h-topology.

Lemma 3.2.1. The presheaves Cycl(X/S, r)Q are separated with respect to the
h-topology.

Proof. Let {pi : Ui → S}i∈I be any h-covering of the scheme S and let k be a
field and x : Spec(k) → S be a k-point and (x0, x1, R) be any fat point over
k. We can pick an i ∈ I such that the (set theoretic) image of x1 is contained
in the (set theoretic) image of pi. Using Corollary 2.1.3 we can find a field L
an L-point y : Spec(L)→ Ui and a fat point (y0, y1, A) over y. Letting E be a
composite of L and k we get a commutative diagram of the form

Spec(L) Spec(A) Ui

Spec(E)

Spec(k) Spec(R) S

y0 y1

pi

x0 x1

which implies that if cycl(pi)(Z) = 0 for all i then (x0, x1)∗(Z) = 0 for any fat
point and thus by Corollary 2.1.17 we have Z = 0.

Proving that Cycl(X/S, r)Q and Cycleff (X/S, r)Q+ are sheaves in the h-
topology reduces to the following lemma which is stated but not proved in
[SV00].
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Lemma 3.2.2. Let pY : Y → Spec(k), pX : X → Spec(k) be two schemes of
finite type over a field k. Then the sequence of abelian groups

Cycl(X/ Spec(k), r)⊗Q cycl(pY )→ Cycl(X ×
Spec(k)

Y/Y, r)⊗Q cycl(pr1)−cycl(pr2)→

→ Cycl((X ×
Spec(k)

Y ×
Spec(k)

Y )/(Y ×
Spec(k)

Y ), r)⊗Q

where pri : Y ×Spec(k) Y → Y are the projections, is exact.

Proof. Suppose that Y is in the kernel of the map (cycl(pr1) − cycl(pr2)).
Since Y → Spec(k) is of finite type we can find a normal extension L/k
and a morphism of finite type k-schemes t : Spec(L) → Y . Let σ be any
k-automorphism of L. We have a map qt,σ : Spec(L)→ Y ×Spec(k) Y satisfying

t = pr1 ◦ qt,σ and t ◦ Spec(σ) = pr2 ◦ qt,σ.

From our assumption on Y and Lemma 2.3.20 it then follows that

cycl(t)(Y) = cycl(Spec(σ))(cycl(t)(Y)) = σ∗(Y)

where σ∗ denotes the action on Cycl(XL). Thus we have that the cycle
cycl(t)(Y) is Gal(L/k)-invariant and thus by Lemma 1.7.3 there is a unique
cycle Z ∈ Cycl(X/ Spec(k), r) ⊗ Q such that Z ⊗k L = cycl(t)(Y). Let
now y : Spec(E) → Y be an E-point of Y and (y0, y1, R) be a fat point
over y. Since Spec(E)×Spec(k) Spec(L) is non-empty we can find a field M
and a morphism Spec(M)→ Spec(E)×Spec(k) Spec(L) and hence an induced
morphism Spec(M) → Y ×Spec(k) Y and by functoriality and the defining
property of Z we have that the two cycles Y and cycl(pY )(Z) pull back to the
same element in Cycl(XM/ Spec(M), r). By Lemma 1.7.2(2) it then follows
that we must have

(y0, y1)∗(Y) = cycl(y)(Y) = cycl(y)(cycl(pY )(Z)) = (y0, y1)∗(cycl(pY )(Z))

and thus Y satisfies the defining property of cycl(pY )(Z) and we are done.

Theorem 3.2.3. Let X → S be a scheme of finite type over a Noetherian
scheme S. Then the presheaves Cycl(X/S, r)Q are sheaves in the h-topology.

Proof. Apart from Lemma 3.2.1 and Lemma 3.2.2 all the details are given in
[SV00, Theorem 4.2.2].

Corollary 3.2.4. Let X → S be a scheme of finite type over a Noetherian
scheme S. Then the presheaves Cycleff (X/S, r)Q+ are sheaves in the h-topology.

Proof. Since Cycleff (X/S, r)Q+ is a subpresheaf of Cycl(X/S, r)Q it is enough to
show that if {pi : Ti → T}i∈I is an h-covering such that if Z ∈ Cycl(X/S, r)Q(T )
satisfies

cycl(pi)(Z) ∈ Cycleff (X/S, r)Q+(Ti) (3.2.1)
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for all i then we must have Z ∈ Cycleff (X/S, r)Q+(T ), which follows easily
from Lemma 2.3.13 and Lemma 1.7.2.

The following Proposition is [SV00, Prop.4.2.6]. Theorem 3.1.16 allows us
to simplify the original proof somewhat.

Proposition 3.2.5. Let X → S be a scheme of finite type over a Noethe-
rian scheme S. Then the presheaves PropCycl(X/S, r)Q are sheaves in the
h-topology.

Proof. In view of Theorem 3.2.3 it is enough to show that if {pi : Ti → T}i∈I
is an h-covering of the Noetherian scheme T and Z ∈ Cycl(X/S, r)Q satisfies
cycl(pi)(Z) ∈ PropCycl(X/S, r)Q(Ti) for all i then Supp(Z) ⊂ T ×S X is
proper over T . By Theorem 3.1.16 the covering {pi}i∈I has a refinement of the
form

{Uj → T ′ → T}j∈J

where {Uj → T ′}j∈J is an open covering and T ′ → T is proper surjective.
Since properness is local on the target it is clear that Supp(ZT ′) is proper
over T ′ and hence also over T . Furthermore Lemma 2.3.18 Item (2) tells
us that Supp(ZT ′)→ Supp(Z) is surjective from which it easily follows that
Supp(Z)→ T must be proper.

Corollary 3.2.6 ([SV00, prop.4.2.6]). Let X → S be a scheme of finite type
over a Noetherian scheme S. Then the presheaves PropCycleff (X/S, r)Q+ are
sheaves in the h-topology.

Proof. In the category of presheaves we have the following pullback diagram

PropCycleff (X/S, r)Q+ PropCycl(X/S, r)Q

Cycleff (X/S, r)Q+ Cycl(X/S, r)Q.

(3.2.2)

Since the presheaves PropCycl(X/S, r)Q, Cycleff (X/S, r)Q+ and Cycl(X/S, r)Q
are sheaves in the h topology by Proposition 3.2.5, Corollary 3.2.4 and The-
orem 3.2.3 respectively, and the forgetful functor from sheaves to presheaves
has a left adjoint hence commutes with limits it follows immediately that
PropCycleff (X/S, r)Q+ must necessarily be a sheaf in the h-topology.

Definition 3.2.7. Let S be a scheme. We denote by Exp.Char(S) the set

Exp.Char(S) := {p ∈ N : ∃s ∈ S with exp. char(k(s)) = p},

where exp. char(k(s)) denotes the exponential characteristic of the field k(s).
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Corollary 3.2.8. Let X → S be a scheme of finite type over a Noetherian
scheme S. Then for any subring Λ of Q (resp. subsemi-ring of Q+) such that
every element of Exp.Char(S) is invertible in Λ the presheaves

Cycl(X/S, r)UI ⊗Z Λ, PropCycl(X/S, r)UI ⊗Z Λ

(resp. Cycleff (X/S, r)UI ⊗N Λ, PropCycleff (X/S, r)UI ⊗N Λ )

are sheaves in the h-topology.

Proof. Keeping in mind Item 2 of Proposition 1.7.7, the result is deduced from
a technique which we are now familiar with.

Theorem 4.2.9 of [SV00] says that the presheaves of relative cycles with
universally integral coefficients are sheaves in the cdh topology. We will now
show that they are in fact sheaves in the finer sd-h topology.

Theorem 3.2.9. Let X → S be a scheme of finite type over a Noetherian
scheme S. Then the presheaves Cycl(X/S, r)UI , Cycleff (X/S, r)UI , PropCycl(X/S, r)UI
and PropCycleff (X/S, r)UI are sheaves in the sd-h topology.

Proof. We only prove the case of PropCycleff (X/S, r)UI ; the other cases are
proved mutatis mutandis. By Corollary 3.2.6 it is enough to show that if
Z ∈ PropCycl(X/S, r)Q(T ) and {pi : Ti → T}i∈I is an sd-h covering such
that cycl(pi)(Z) ∈ PropCycleff (X/S, r)UI(Ti) for all i then we must have
Z ∈ PropCycleff (X/S, r)UI(T ). This follows immediately from Lemma 2.3.21
and the definition of the sd-h topology.

For more fascinating results concerning Chow sheaves in the h-topologies,
such as the fact that Cyclequi(X/S, r)Q are sheaves in the qfh topology or
that the h-sheafification of the presheaf PropCycleff (X/S, r)Q+ ⊗N Q gives
PropCycl(X/S, r)Q, see section 4.2 of [SV00].

3.3 Sheaves in the qfh-topology via finite group
actions

In this section we recall that sheaves in the qfh-topology interact neatly with
quotients by finite groups, an aspect of qfh-sheaves playing an important role
in [SV96]. Despite this being the natural chapter to discuss such topics, the
proof of Proposition 7.1.2 is actually the only part of the thesis where this
technology will be put to use. Thus the reader may chose to skip this section
on a first reading.
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Finite group actions and fibers

The following useful lemma is stated but not proved in [SV96].

Lemma 3.3.1 ([SV96, Lemma 5.1]). Let q : X → S be a finite surjective
morphism of schemes with S Noetherian and let G be a finite group acting on
the right on X/S. The following conditions are equivalent

(1) For any s ∈ S the (induced) action of G on q−1(s) is transitive, for
any x ∈ q−1(s) the field extension k(x)/k(s) is normal and the natural
homomorphism Gx = StabG(x)→ Gal(k(x)/k(s)) is surjective.

(2) For any algebraically closed field Ω and any geometric point ζ : Spec Ω→
S the action of G on the set of geometric points of X over ζ is transitive.

(3) For any algebraically closed field Ω and any geometric point ζ : Spec Ω→
S the action of G on the (underlying set of the ) geometric fiber Xζ =
X ×S Spec Ω is transitive.

Proof. (1) implies (2): Suppose we have two geometric points τ1, τ2 : Spec Ω→
X over ζ : Spec Ω→ S. In other words we have a commutative diagram

X

Spec Ω S

q
τ1

τ2

ζ

We want to show that there is some g ∈ G such that τ2 = g ◦ τ1. Let
ω denote the only point of Ω. Since G acts transitively on q−1(ζ(ω)) we
may assume that τ1(ω) = τ2(ω). The problem now translates to having a
commutative diagram of fields

k(x)

Ω k(s)
σ2

σ1

where k(x)/k(s) is normal by assumption, and we want to find g ∈ Gx ⊂ G
such that the canonically induced morphism g : k(x)→ k(x) has the property
that

σ2 = σ1 ◦ g.

By [Stacks, Tag 0BR4] we have some h ∈ Gal(k(x)/k(s)) such that

σ2 = σ1 ◦ h

and since the canonical map Gx → Gal(k(x)/k(s)) is surjective by assumption,
we have some g ∈ Gx such that g = h.
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For (2) implies (3): The action of G on the geometric fiber is given as
follows. Let p : XΩ → X be the projection to X. Then for any g ∈ G, by the
universal property of XΩ, we have a unique map ρg : XΩ → XΩ such that

p ◦ ρg = g ◦ p

and ρg is an automorphism with inverse ρg−1 . It is clear that this gives a right
group action of G on the geometric fiber XΩ. Now this again gives a right group
action of the underlying set of XΩ by (x, g) 7→ ρg(x) ∈ XΩ. We now want to
show that if x1, x2 ∈ XΩ, then we can find some g ∈ G such that ρg(x1) = x2.
Since XΩ → Spec Ω is finite and Ω is algebraically closed, we have that giving
a point in XΩ is the same as giving a Ω-morphism Spec Ω→ XΩ. We denote
the morphisms corresponding to x1 resp. x2, be x1 : Spec Ω→ XΩ resp. x2.

By the assumption of (2) there is some g ∈ G such that

g ◦ (p ◦ x1) = p ◦ x2.

But then
p ◦ (ρg ◦ x1) = p ◦ x2

thus by universal property of XΩ we must have

ρg ◦ x1 = x2.

Thus ρg(x1) = x2.
For (3) implies (2): Suppose that η is the point of Spec Ω and let

s = ζ(η) ∈ S. We want to show that if τ1, τ2 : Spec Ω→ X are two geometric
points over ζ, then we can find some g ∈ G such that g ◦ τ1 = τ2. By properties
of the fiber product, we may replace X with the finite scheme q−1(s) and S
with Spec k(s). Let p : XΩ → q−1(s) be the projection. By universal property
we get induced maps τ ′1, τ ′2 : Spec Ω → XΩ with p ◦ τ ′i = τi for i = 1, 2. By
assumption there is some g ∈ G such that ρg ◦ τ ′1 = τ ′2. Further we have that

τ2 = p ◦ τ ′2 = p ◦ (ρg ◦ τ ′1) = g ◦ p ◦ τ ′1 = g ◦ τ1

which completes the proof of the implication.
For (3) implies (1): Assume that (1) fails and show that (3) fails by

splitting it up into the three cases where at least one of the assumptions of
(1) fails. This is not hard given what we have already done, thus we omit the
proof of this last implication.

Notation 3.3.2. From now on if we say that (X,G)/S or (X → S,G) satisfies
the equivalent conditions of Lemma 3.3.1 then we mean that X is a scheme
finite over S, G a finite group acting on S-automorphisms and X/S together
with the action of G satisfy the equivalent conditions of Lemma 3.3.1.
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Corollary 3.3.3 ([SV96, Corollary 5.2]). Assume that the equivalent conditions
of Lemma 3.3.1 are fulfilled and assume further that S is irreducible. Then G
acts transitively on the set of irreducible components of X and each component
maps surjectively onto S.

Proof. First note that since q is closed and surjective and S is irreducible we
have that some irreducible component X1 of X is mapped onto S. Now suppose
that X2 is an irreducible component of X such that that q(X2) 6= X. Let η2

denote the generic point of X2 and let ξ be the generic point of S. We have
that any affine open subset of S containing q(η2) must also contain ξ, and from
the going up property of integral ring morphisms, we deduce that there is a
point x ∈ X1 with

x ∈ q−1(q(η2)).

Thus x is not a generic point of X, but since (1) in Lemma 3.3.1 is fulfilled, we
have some g ∈ G such that g(x) = η2, but then since {x} is not an irreducible
component of X, X2 cannot be an irreducible component either which is a
contradiction. Thus we have deduced that all the generic points of X are
contained in the fiber q−1(ξ), and since G acts transitively on this fiber we are
done.

Corollary 3.3.4. Assume that (X,G)/S satisfies the equivalent conditions of
Lemma 3.3.1. Then the graph of the pair (X,G)/S, ψX/S : GX → X ×S X
(Definition 1.5.3) is finite and surjective.

Proof. It is enough to show that ψX/S is surjective over each s ∈ S. To this
extent pick some s ∈ S and let Ω be an algebraic closure of the field k(s).
Consider the commutative diagram

GXΩ
XΩ×Spec ΩXΩ

GXs Xs×Spec k(s)Xs (X ×S X)s

GX X ×S X

ψXΩ/Spec Ω

ψXs/ Spec k(s) ∼=

ψX/S

Since (XΩ×Spec ΩXΩ)→ Xs×Spec k(s)Xs factors as

XΩ ×
Spec Ω

XΩ
∼=→ (Xs ×

Spec k(s)
Xs)Spec Ω → Xs ×

Spec k(s)
Xs

where the last morphism is surjective, we have that (XΩ×Spec ΩXΩ) →
Xs×Spec k(s)Xs is surjective, hence it is enough to prove surjectivity of ψXΩ/Spec Ω.
To this extent note that giving a point in XΩ×Spec ΩXΩ is equivalent to giving
a Spec Ω-point Spec Ω → XΩ×Spec ΩXΩ which again is equivalent to giving
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two Spec Ω-points of XΩ, say x, y. Now let σ ∈ G be such that x · σ = y. Then
the composition

Spec Ω
x→ (XΩ)σ → GXΩ

ψXΩ/ Spec Ω→ XΩ ×
Spec Ω

XΩ

is the point corresponding to (x, y).

Lemma 3.3.5. Suppose that (X,G)/S satisfies the equivalent conditions of
Lemma 3.3.1 . If Y → S is any morphism then Y ×S X → Y together with the
canonically induced action of G also satisfy the equivalent conditions of Lemma
3.3.1.

Proof. Let Spec Ω→ Y be a geometric point of Y . Then Spec(Ω)×Y (Y ×S X) ∼=
Spec Ω×S X which G acts transitively on by assumption.

Corollary 3.3.6. Suppose (X → S,G) satisfies the equivalent conditions of
Lemma 3.3.1 and suppose we have a morphism q : Y → X. For each σ ∈ G the
morphisms idY : Y → Y and σ ◦ q : Y → X induce a morphism Y → Y ×S X
and in turn a morphism

υY,X/S :
∐
σ∈G

Y → Y ×
S
X.

The aforementioned morphism υY,X/S is finite and surjective.

Proof. The morphism υY,X/S is clearly finite. Hence it is enough to prove
surjectivity. To this extent let y ∈ Y be any point in Y and let t ∈ Y ×S X be
any point lying over y. Letting y′ denote the image of y in Y ×S X under the
morphism Y → Y ×S X induced by idY : Y → Y and q , we have that y′ is in
the fiber of y. Now by Lemma 3.3.5 we have that the induced action of G on
Y ×S X acts transitively on fibers. Hence there is some σ ∈ G such that

(idY × σ)(y′) = t,

but this is also the image of y under the morphism Y → Y ×S X induced by
idY and σ ◦ q.

Example 3.3.7. Assume that S is a normal connected (hence integral) scheme.
Let E be a finite normal extension of the field K(S) with Galois group G =
Gal(E/K(S)), let Y denote the normalization of S in E and let q : Y → S be
the normalization morphism.

From [Bou64, Ch.5, Sec. 2, n.3, Prop. 6] it follows that (q,G) satisfies the
equivalent conditions of Lemma 3.3.1.

Example 3.3.8. Suppose that X is a scheme of finite type over Z and suppose
that the finite group G acts admissibly on X by Z-automorphisms. Then by
Corollary 1.5.15 the morphism X → X/G is finite. It follows from Proposition
1.5.13 that the morphism X → X/G satisfies the equivalent conditions of
Lemma 3.3.1.
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Finite group actions and qfh-sheaves

The following Lemma is closely related to [SV00, Lem. 5.16] and it tells us
that if π : X → X/G is the quotient of a finite group acting admissibly on
X then for any qfh-sheaf F the sections of F(X/G) are identified with the
G-invariant sections of F(X).

Lemma 3.3.9. Let π : X → S be a finite surjective morphism of schemes with
S Noetherian and suppose that G is a finite group acting on S-automorphisms
of X. Suppose further that (π,G) satisfies the equivalent conditions of Lemma
3.3.1. Let F be a qfh-sheaf. Then π∗ : F(S)→ F(X) induces an isomorphism
F(S) ∼= F(X)G and we have a factorization

F(S) F(X)

F(X)G

π∗

Proof. By Corollary 3.3.4 we have that ψX/S : GX → X ×S X is a qfh-covering.
Now for each σ ∈ G we have a commutative diagram

X

GX/S

X ×S X X

X S

idX

σ

◦

ψX/S

pr1

pr2 π

π

From this we see that if f ∈ F(X) then if

pr∗1(f) = pr∗2(f)

we have that
f = σ∗(f)

for all σ. Conversely if
f = σ∗(f)

for all σ, then using that {X → GX/S =
∐
σ∈GX}σ∈G is a qfh-covering we get

that we must have that

ψ∗X/S ◦ pr
∗
2(f) = ψ∗X/S ◦ pr

∗
1(f)

and since ψX/S is also a qfh-covering we must then have pr∗1(f) = pr∗2(f).
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3.4 An overview of the literature

This chapter closely follows and occasionally extends theory found in [Voe96],[SV96]
and [SV00]. The following table explains how many of our statements compare
to those found in the literature:

Comparison table
Statement Reference(s) Statement

compari-
son

Proof

Proposition 3.1.8 [Voe96, Propo-
sition 3.1.3]

Identical Identical

Corollary 3.1.9 [Voe96, Rmk
after 3.1.3]

Identical Expands

Proposition 3.1.10 [Voe96, Prop.
3.1.4]

Extends Similar

Proposition 3.1.12 [SV96,
Lem.10.3]

Generalises Applies ideas from
the original proof

Theorem 3.1.16 [Voe96,
Thm.3.1.9]

Generalises Similar

Lemma 3.2.2 [SV00,
Lem.4.2.3]

Identical Added

Proposition 3.2.5 [SV00,
Prop.4.2.6]

Similar A little different

Corollary 3.2.6 [SV00,
Prop.4.2.6]

Similar A little different

Theorem 3.2.9 [SV00,
Thm.4.2.9]

Extends Similar

Lemma 3.3.1 [SV96, Lemma
5.1]

Identical Added

Corollary 3.3.3 [SV96, Corol-
lary 5.2]

Identical Added

Lemma 3.3.9 [SV00, Lem.
5.16]

Generalises Central idea is the
same. More de-
tails added
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Chapter 4

Generalized seminormalization
with applications

Inspired by the work of Ross [Ros10] and Huber-Kelly [HK18] we introduce
in this chapter a "pointwise" construction suitable for the parallel study of
semi and weak normalization in the context of rings and schemes. This is
demonstrated in several instances: we prove a faithfully flat descent result for
our construction yielding a new proof of the fact that semi and weak normality
descends by faithfull flatness (Proposition 4.1.26) and in Lemma 4.2.22 we state
and prove an analogue of Manaresi’s characterisation of the weak normalization
([Man80, Thm. (I.6)]) yielding a new proof of Manaresi’s Theorem in the
case of rings with finitely many minimal prime ideals. Furthermore we apply
our construction to study representable sheaves in the h-topologies, which
extends Huber-Kelly’s description of representable sheaves in several of the
decomposable cousins of the h-topology ([HK18, Prop. 6.14]) to all Noetherian
schemes and simultaneously gives a special case of Rydh’s h-theoretic version
([Ryd10, Thm. (8.16)]).

We then finish the chapter by applying our efforts to give simple proofs of
many of the results of Section 3.2 of [Voe96] together with some analogues for
the decomposable cousins of the h topology.

Since Rydh has mentioned that one can make appropriate modifications
to his methodology regarding [Ryd10, Thm. 8.16] (or to the original methods
considered by Voevodsky in [Voe96]) to also cover the cases of decomposable
topologies, and as some of the other results obtained are already known in
some form, we stress that the novelty of this chapter mainly lies in our proofs
and methodology.

Much of the theory appearing in this chapter was developed in collaboration
with Jarle Stavnes.
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4.1 The η-pointwise construction

The construction and its properties

Throughout the rest of this chapter η : IdFields → F will always denote a
natural transformation from the identity functor on the category of fields to
some endofunctor F such that the following conditions are satisfied

1. The field extension F (η(K)) : F (K)→ F (F (K)) is an isomorphism for
all fields K.

2. The equivalent conditions of Lemma 1.4.25 are satisfied, i.e. η(K) is a
purely inseparable extension for all fields K.

Example 4.1.1. The two main examples of interests is the perfect closure
(η(K) : K → KPerf ) or the identity (η(K) : K

idK→ K). There are also other
examples of such natural transformations. Indeed for a prime number p and
natural number n let Fp,n be the endofunctor on the category of fields defined
as follows: For a field K we set

Fp,n(K) =

{
K, if charK = p and tr. degFP (K) ≤ n, or charK 6= p ;

KPerf , otherwise.

Note that we have an obvious map K → Fp,n(K) which is natural in K.

Construction 4.1.2. For a ring A set

Nη(A) :=
∏

p∈Spec(A)

F (k(p)) (4.1.1)

and let tA : A→ Nη(A) be the induced homomorphism such that

A Nη(A)

k(p) F (k(p))
η(k(p))

(4.1.2)

commutes for all p ∈ Spec(A). For a homomorphism of rings f : A → B let
Nη(f) : Nη(A)→ Nη(B) be the morphism such that

Nη(A) Nη(B)

F (k(p)) F (k(q))
F (fq/p)

(4.1.3)

commutes for all q ∈ Spec(B), p ∈ Spec(A) with f−1(q) = p. This makes Nη

into an endofunctor on the category of rings and we have an obvious natural
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transformation IdRings → Nη. Let P be a subcategory of the category of
rings. Let MPη (A) be the subset of Nη(A) mapped to im tR by Nη(f) for all
homomorphisms f : A→ R with R ∈ P. Then MPη (A) is a ring, and there is
an induced homomorphism of rings qA : A→ MPη (A) natural in A which is an
injection if and only if A is reduced (indeed, the kernel is the nilradical of A).
Note that qR is an isomorphism for all reduced rings R ∈ P.

Remark 4.1.3. The main result of [Ros10] is that if A is a Noetherian ring
and P the full subcategory of discrete valuation rings then qA : A→ MPId(A)
is the seminormalization of the ring A. Furthermore if one instead lets P
denote the full subcategory of all valuation rings then combining Lemma 3.7
and Proposition 6.2 of [HK18] then if A is a ring with finitely many minimal
prime ideals the map qA : A → MPId(A) is the seminormalisation of A. This
will also follow from the main theorem of this section (Theorem 4.1.4).

Throughout Vη will denote the category of valuation rings R such that
η(R(0)) : R(0) → F (R(0)) is an isomorphism. We will always write Mη(A)

for the ring M
Vη
η (A). Note that if f : A → B is a morphism of two rings

such that Nη(f) : Nη(A) → Nη(B) is an isomorphism then the induced map
Spec(f) : Spec(B)→ Spec(A) must necessarily give a bijection of sets, thus if
in addition Spec(f) is a closed map of topological spaces which in particular
is the case if f is integral then Spec(f) is a (universal) homeomorphism. The
purpose of this section is to prove the following Theorem:

Theorem 4.1.4. Let A be a ring with finitely many minimal prime ideals.
Then

1. The map qA : A→ Mη(A) is integral .

2. the induced map Spec(qA) : Spec(Mη(A)) → Spec(A) is a bijection of
sets.

3. For q ∈ Spec(Mη(A)) lying over p ∈ Spec(A) the field extension η(k(p)) :
k(p)→ F (k(p)) factors through the map of residue fields qAq/p : k(p)→
k(q). In particular the map Spec(qA) is a universal homeomorphism.

4. The map Nη(qA) : Nη(A)→ Nη(Mη(A)) is an isomorphism.

5. If f : Mη(A)→ B is any integral ring homomorphism to a reduced ring
B such that Nη(f) is an isomorphism then f is an isomorphism.

6. If g : A→ B is an integral ring homomorhism with Nη(g) an isomorphism
then there exists a unique map g′ : B → Mη(A) such that qA = g′ ◦ g.

In particular if η is the identity (η(K) : K
IdK→ K) then qA : A → MId(A) is

isomorphic to the seminormalization of A as defined in for instance [Tra70].
Furthermore if η is the perfect closure (η(K) : K → KPerf ) the map qA : A→
M(−)Perf (A) is the absolute weak normalization of A introduced in [Ryd10] .
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The theorem will be proved in many steps starting with the following
Lemma:

Lemma 4.1.5. If K is a field then Mη(K) = F (K).

Proof. Let x ∈ F (K) and let q be a positive power of charK such that xq ∈ K
or in other words there is some c ∈ K such that xq − c = 0. Then for any
map f : K → R with R ∈ Vη we have that for any point p ∈ Spec(R) the
image of x under the induced map F (K)→ F (k(p)) is a root of a polynomial
of the form T q − f(c). Since this holds in particular for the zero ideal of R
and R is integrally closed in its field of fractions we have some r ∈ R satisfying
rq = f(c), thus the image of x in F (k(p)) must coincide with the image of r
for all p ∈ Spec(R).

Lemma 4.1.6. Let A be an integral domain, and let K be its field of fractions.
Suppose that η(K) : K → F (K) is an isomorphism. Then:

1. The canonical map Mη(A)→ F (K) is injective.

2. The inclusion A ⊆ K ⊆ F (K) factors as A ⊆ Mη(A) ⊆ F (K).

Proof. Consider the induced morphism Mη(A) → Mη(K) = F (K). Suppose
that (fp)p maps to 0. Then f(0) = 0. Consider any nontrivial specialization
(0) ⊂ p in A and let g : A → R be a map to a valuation ring covering
this specialization (Lemma 1.3.4) with R(0) = K. Consider the induced ring
homomorphism Mη(g) : Mη(A)→ Mη(R). The image Mη(g)((fp)p) ∈ Mη(R)
is contained in im tR, which means that there exists an element fR ∈ R such
that tR(fR) = Mη(g)((fp)p). Since f(0) = 0 it follows that fR = 0 which
implies that fp = 0. Since p was arbitrary we obtain fp = 0 for all p, thus
(fp)p = 0 ∈ Mη(A). This proves (1) which again implies (2).

Proposition 4.1.7. Let A be a integrally closed domain with field of fractions
K. Suppose that η(K) : K → F (K) is an isomorphism. Then qA : A→ Mη(A)
is an isomorphism.

Proof. We have that A is the intersection of the valuation rings of K containing
A ([Stacks, Tag 090P]). Consider the induced factorizations A → Mη(A) →
R ⊆ K for valuation rings R of K containing A. It follows from Lemma 4.1.6
that the homomorphism Mη(A)→ R is injective. By taking the intersection
of all such R’s, we get that A = Mη(A) as subrings of K. The result now
follows.

Lemma 4.1.8. Let A,B be rings and pA, pB denote the projections from the
product onto A,B respectively. Then the induced map

Mη(A×B) Mη(A)×Mη(B)
(Mη(pA),Mη(pB))

(4.1.4)

is an isomorphism.
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Proof. We have a commutative diagram

Mη(A×B) Mη(A)×Mη(B)

Nη(A×B) Nη(A)×Nη(B)

(Mη(pA),Mη(pB))

(Nη(pA),Nη(pB))

(4.1.5)

where the lower horizontal arrow is an isomorphism. Which immediately
implies injectivity of the top horizontal morphism. For surjectivity let (fp)p ∈
Nη(A× B) correspond to an element in the image of the right most vertical
arrow. If f : A×B → R is any map with R ∈ Vη, then since R is an integral
domain it follows that f either factors through pA or pB hence it follows that
(fp)p ∈ Mη(A×B).

Proposition 4.1.9. Let A be a normal ring with finitely many minimal prime
ideals. Suppose that for every minimal prime ideal p of A the morphism η(k(p))
is an isomorphism. Then qA : A→ Mη(A) is an isomorphism.

Proof. If A is a normal ring with finitely many minimal prime ideals then there
exists finitely many normal domains A1, . . . , An such that A ∼=

∏
iAi ([Stacks,

Tag 030C]). Thus by Lemma 4.1.8 and Proposition 4.1.7 we have

Mη(A) ∼=
∏

Mη(Ai) ∼=
∏

Ai ∼= A. (4.1.6)

Proposition 4.1.10. Let A be a ring with finitely many minimal prime ideals.
Then

1. The map qA : A→ Mη(A) is integral .

2. the induced map Spec(qA) : Spec(Mη(A)) → Spec(A) is a bijection of
sets.

3. For q ∈ Spec(Mη(A)) lying over p ∈ Spec(A) the field extension η(k(p)) :
k(p)→ F (k(p)) factors through the map of residue fields qAq/p : k(p)→
k(q).

4. The map Nη(qA) : Nη(A)→ Nη(Mη(A)) is an isomorphism.

Proof. Let Ã denote the integral closure ofAred in the product
∏
p∈Spec(A),
p minimal

F (k(p)).

The ring Ã satisfies the properties of Proposition 4.1.9. Consider now the com-
mutative diagram

A Ã

Mη(A) Mη(Ã).

i

qA qÃ ∼=
Mη(i)

(4.1.7)
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Since i is integral it follows that qA must also be integral proving (1). For
(2) let f = (fp)p ∈ Mη(A) and denote its image in Ã by f̃ . This element has
the following property: For any q ∈ Spec(Ã) with q ∩ A = p the image of f̃

under the map Ã→ k(q)
η(k(q))→ F (k(q)) coincides with the image of fp under

F (iq/p) : F (k(p))→ F (k(q)). This shows that for fixed p ∈ Spec(A) if fp 6= 0

then f̃ cannot be contained in any prime ideal q ∈ Spec(Ã) lying over p, and
if fp = 0 we must necessarily have f̃ ∈ q for every q ∈ Spec(Ã) with q lying
over p. Hence if we have two prime ideals p1, p2 of Mη(A) lying over p then
surjectivity of Spec(Ã)→ Spec(Mη(A)) implies that any element of p1 must be
contained in p2 and vice versa hence (2) follows. Part (3) is now a consequence
of the fact that (2) implies that any prime ideal of Mη(A) is the preimage of a
prime ideal of Nη(A). Finally part (4) follows from part (3) and the condition
that F → F ◦ F is an isomorphism.

The proposition easily gives the following consequences:

Corollary 4.1.11. Let f : A→ B be a morphism of rings both of which have
finitely many minimal prime ideals. Then the following is satisfied:

1. The map f is integral if and only if the induced map Mη(f) is.

2. The map Spec(f) is surjective if and only if Spec(Mη(f)) is.

Suppose furthermore that the induced map Mη(f) : Mη(A)→ Mη(B) is
an isomorphism. Then we also have:

3. The map Spec(f) : Spec(B)→ Spec(A) gives a bijection of prime ideals
of A and B.

4. For any q ∈ Spec(B) with p = f−1(q) the map η(k(p))→ F (k(p)) factors
through the induced map of residue fields f q/p : k(p)→ k(q).

Recalling Lemma 1.4.28 and Lemma 1.4.30 we also obtain:

Corollary 4.1.12. Let f : A → B be a morphism of rings both of which
have finitely many minimal prime ideals. Then the induced map Spec(f)
is universally injective (resp. a universal homeomorphism) if and only if
Spec(Mη(f)) is.

Lemma 4.1.13. Let f : A→ B be an integral homomorphism such that Nη(f) :
Nη(A)→ Nη(B) is an isomorphism. Then any homomorphism g : A→ R with
R ∈ Vη factors through f .

Proof. Let g : A → R be such a homomorphism and let p = g−1((0)) ⊂ A.
Since Nη(f) is an isomorphism by assumption there is a unique prime ideal
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p′ ⊂ B such that f−1(p′) = p and further F (fp′/p) : F (k(p))→ F (k(p′)) is an
isomorphism. From this we obtain a commutative diagram of the form

B R(0)

A R
g

f (4.1.8)

Now apply 1.3.11 to conclude.

Corollary 4.1.14. Let A be a ring. Suppose that f : A → B is any integral
morphism such that Nη(f) is an isomorphism. Then Mη(f) is an isomorphism.

Proof. We have a commutative diagram

A B

Mη(A) Mη(B)

Nη(A) Nη(B)
∼=

(4.1.9)

from which injectivity of Mη(A)→ Mη(B) is clear. By Lemma 4.1.13 surjec-
tivity is also clear.

Corollary 4.1.15. Let R be a valuation ring with field of fractions K. The
ring Mη(R) is isomorphic to the integral closure of R in F (K). Furthermore
Mη(R) is a valuation ring with field of fractions F (K) and the image of Mη(R)
in F (K) intersected with K coincides with the image of R in F (K).

Proof. Let R̃ denote the integral closure of R in F (K) and note that since
the extension η(K) is purely inseparable and therefore algebraic the field of
fractions of R̃ is F (K). If p is the exponential characteristic of the field K then
for a given x ∈ F (K) have some power of p denoted by q such that xq ∈ K. By
Lemma 1.3.3 we then either have xq ∈ R which necessarily means that x ∈ R̃
or we have (xq)−1 = (x−1)q ∈ R; thus we see that R̃ is a valuation ring.

Hence for every x ∈ R̃ there is some positive integer n such that xpn ∈ R
(and pnx = 0 ∈ R). Thus by [Stacks, Tag 0BRA] it follows that the induced
map Nη(R)→ Nη(R̃) is an isomorphism, thus by Corollary 4.1.14 the map

Mη(R)→ Mη(R̃) (4.1.10)

is an isomorphism. Proposition 4.1.7 now allows us to conclude the proof.

Lemma 4.1.16. Let A be a ring with finitely many minimal prime ideals. Then
the maps qMη(A) : Mη(A) → Mη(Mη(A)) and Mη(qA) : Mη(A) → Mη(Mη(A))
coincide. Moreover this map is an isomorphism.
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Proof. For a given p ∈ Spec(A) we have by Proposition 4.1.10 a unique q ∈
Spec(Mη(A)) lying over p and moreover the map η(k(p)) : k(p) → F (k(p))
factors through the induced map of residue fields qAq/p : k(p) → k(q). Thus
since k(q)/k(p) is purely inseparable it follows that the following diagram is
commutative

Mη(A) k(q)

Nη(A)

F (k(p)) F (k(q)).

η(k(q))

prp

F (qAq/p)

(4.1.11)

Hence by the definition of qMη(A) and Mη(qA) we see that they must coincide.
The last statement follows from Corollary 4.1.14 and Proposition 4.1.10 again.

Proposition 4.1.17. Let A be a ring with finitely many minimal prime ideals.
Then the following hold true:

1. If f : Mη(A)→ B is any integral ring homomorphism to a reduced ring
B such that Nη(f) is an isomorphism then f is an isomorphism.

2. If g : A→ B is an integral ring homomorhism with Nη(g) an isomorphism
then there exists a unique map g′ : B → Mη(A) such that qA = g′ ◦ g.

Proof. For (1): Consider the following commutative diagram

Mη(A) B

Mη(Mη(A)) Mη(B).

f

qMη(A) qB

Mη(f)

(4.1.12)

By Lemma 4.1.16 the leftmost vertical arrow is an isomorphism and by Corollary
Corollary 4.1.14 the lower horizontal arrow is also an isomorphism hence we
conclude that f must necessarily be an isomorphism.

For (2): Suppose first that there exists a map g′ : B → Mη(A) such that
qA = g′ ◦ g. Then we have a commutative diagram

A B Mη(A)

Mη(A) Mη(B) Mη(Mη(A)).

g

qA

g′

qB qMη(A)

Mη(g) Mη(g′)

(4.1.13)

From which we deduce that

qMη(A) ◦ g′ = Mη(qA) ◦Mη(g)−1 ◦ qB = qMη(A) ◦Mη(g)−1 ◦ qB. (4.1.14)
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Hence in this case we must have g′ = Mη(g)
−1 ◦ qB and since the right hand

side always exists we have proved both the existence and uniqueness of g′.

We can now finally prove the main theorem of this section:

Proof of Theorem 4.1.4. Parts (1) through (4) are proved in Proposition 4.1.10
and (5)-(6) are both proved in Proposition 4.1.17.

The relative case and weak normalization

Item 6 of Theorem 4.1.4 gives a defining universal property of the map qA : A→
Mη(A). For a fixed ring map A→ B we can apply the pointwise η-construction
to prove the existence of a ring with a similar universal property relative to
the morphism A→ B.

Construction 4.1.18. Let A be a ring with finitely many minimal prime
ideals and f : A → B a morphism such that Spec(f) : Spec(B) → Spec(A)
is surjective. Let (B/A)η be the pullback of the two maps Mη(f) : Mη(A)→
Mη(B) and qB : B → Mη(B). Denote the two projections by uB/A : (B/A)η →
Mη(A) and iB/A : (B/A)η → B . Note that iB/A is injective. Finally let
qB/A : A→ (B/A)η be the unique map determined by qA and f .

Proposition 4.1.19. Let A→ B be a map of rings where A has finitely many
minimal prime ideals and the induced map Spec(B)→ Spec(A) is surjective.
Then the following assertions hold true:

1. The homomorphism qB/A : A→ (B/A)η is integral.

2. The induced map Spec(qB/A) : Spec((B/A)η) → Spec(A) is a bijection
of sets.

3. For q ∈ Spec((B/A)η) lying over p ∈ Spec(A) the field extension η(k(p)) :
k(p)→ F (k(p)) factors through the map of residue fields qB/Aq/p : k(p)→
k(q). In particular the map Spec(qB/A) is a universal homeomorphism.

4. The map Nη(qB/A) : Nη(A)→ Nη((B/A)η) is an isomorphism.

5. For any factorization of f of the form

A B′ B
f1

f

f2 (4.1.15)

where f1 is integral and Nη(f1) an isomorphism the map f2 factors
uniquely through iB/A : (B/A)η → B.

In particular if η is the identity the map (resp. the perfect closure) qB/A
is the semi-normalization (resp. weak normalization) of A in B.
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Proof. Since Theorem 4.1.4 tells us that qA is integral and the map qB has
nil-potent kernel it follows easily that qB/A is integral and that uB/A is integral
with nilpotent kernel. Hence Spec(uB/A) is surjective from which we easily
deduce that Spec(qB/A) must be bijective. Thus (1) and (2) are proved. Parts
(3) and (4) immediately follow from Theorem 4.1.4 again and the standing
assumptions on η. For the last part recall from Corollary 4.1.14 that Mη(f1) is
an isomorphism thus the maps Mη(f1)−1◦qB′ and f2 induce a mapB′ → (B/A)η
with the desired property and the uniqueness of this map follows from the fact
that Mη(f) is a monomorphism and part (2) of Proposition 4.1.17.

Lemma 4.1.20. Suppose that A is a ring with finitely many minimal prime
ideals and f : A→ B is a ring homomorphism with Spec(f) surjective. Then
letting C denote the integral closure of A in B the induced map

j : (C/A)η → (B/A)η (4.1.16)

is an isomorphism.

Proof. Recall from Proposition 4.1.19 that the map qB/A is integral, hence the
inclusion iA/B : (B/A)η → B factors through C. Moreover since qB/A = j◦qC/A
it follows from part (5) of Proposition 4.1.19 that there is a unique map
(B/A)η → (C/A)η which is easily seen to be an inverse to j.

Taking η to be the identity (resp. perfect closure) in the following Lemma
gives us Lemma 1.2 of [Tra70] (resp. Corollary (I.8) of [Man80]) for rings with
finitely many minimal prime ideals.

Lemma 4.1.21. Let A be a ring with finitely many minimal prime ideals and
suppose we have maps f : A → B and g : B → C. If qB/A and qC/B are
isomorphisms then so is qC/A. Moreover if g : B → C is injective then we have
that if qC/A is an isomorphism then so is qB/A

Proof. Consider the following diagram where each square is a pullback:

(B/A)η B

(C/A)η (C/B)η C

Mη(A) Mη(B) Mη(C).

q′
qC/B

qC

Mη(f) Mη(g)

(4.1.17)

We see that if qC/B is an isomorphism then so is q′ : (B/A)η → (C/A)η and
since qC/A = q′ ◦ qB/A the first statement follows. For the last note that if qC/A
is an isomorphism then clearly qB/A is an injection and if g is an injection then
so is q′ hence qB/A must also be a surjection completing the proof.
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Relations to Kollar’s description

The description of the semi/weak normalization given in the proof of [Kol96,
Ch.1, Prop. 7.2.3] will be useful for us later on. Thus we will use our pointwise
description to directly prove that for F = Id (resp. F = Perf(−)) our (B/A)η
coincides with Kollár’s semi (resp. weak) normalization of A in B, at least
when B is integral over A. In order to do so we will need the following lemma:

Lemma 4.1.22. Let f : A → B be an integral ring homomorphism with
Spec(f) surjective. Then x ∈ Nη(A) is contained in Mη(A) if and only if
Nη(f)(x) ∈ Mη(B).

Proof. One implication is obvious. For the other suppose Nη(f)(x) ∈ Mη(B).
Let g : A → R be any ring homomorphism with R ∈ VF . By Lemma 1.3.12
there exists a commutative diagram

A B

R R′

f

g g′

h

with R′ a valuation ring, Spec(h) surjective and R′ ∩ R(0) = R (where the
intersection is taken inside R′(0)). By assumption there is some r′ ∈ R′ with

tR′(r
′) = Nη(g

′)(Nη(f)(f)(x)) = Nη(h)(Nη(g)(x))

from which we see that r′ ∈ R′ ∩R(0) thus r′ ∈ R and by injectivity of Nη(h)
we must necessarily have tR(r′) = Nη(g)(x) thus x ∈ Mη(A) completing the
proof.

Proposition 4.1.23. Suppose that f : A → B is an integral ring homomor-
phism with Spec(f) surjective. Then the following diagram

(B/A)η B

Mη(A) Mη(B)

Nη(A) Nη(B)

iB/A

uB/A qB

Mη(f)

Nη(f)

is a pullback of tB : B → Nη(B) along Nη(f) : Nη(A)→ Nη(B).

Proof. Follows easily from Lemma 4.1.22.
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From this proposition it follows that the image of iB/A in B is exactly the
description of the semi/weak normalization given in [Kol96].

The following example is the standard example telling us that the notions
of semi and weak normality don’t necessarily coincide in positive characteristic.

Example 4.1.24. Consider the Whitney umbrella with coordinate ring A =
k[X,Y, Z]/(XY 2 − Z2) with normalization k[S, T ] given by X 7→ S2, Y 7→
T,Z 7→ ST which induces a homeomorphism of spectra (at least when k
is algebraically closed). Using Lemma 4.1.23 we then easily see that A is
seminormal, and if k has characteristic two then the weak normalization of A
coincides with the normalization.

Faithfully flat descent

The following is an analogue of [Yan83, Sec.2, Prop.1]

Lemma 4.1.25. Suppose we have a pullback diagram of commutative rings:

A B

A′ B′

f

j

g

j′

with Spec(j′) and Spec(j) surjective. If the map qB′/A′ : A′ → (B′/A′)η is an
isomorphism then so is the map qB/A : A→ (B/A)η.

Proof. Suppose that we are given maps t1 : D → Mη(A) and t2 : D → B such
that

Mη(j) ◦ t1 = qB ◦ t2.

Then by assumption we get a unique map t′ : D → A′ such that qA′ ◦ t′ =
Mη(f) ◦ t1 and j′ ◦ t′ = g ◦ t2. From this latter equality we get induced a unique
map t : D → A such that

f ◦ t = t′ and j ◦ t = t2

Since the map Mη(j) is a monomorphism it is clear that we must have qA ◦ t =
t1. Furthermore since j′ is necessarily a monomorphism j must also be a
monomorphism hence t is the unique map satisfying the following two equalities:

j ◦ t = t2 and qA ◦ t = t1.

If η is the perfect closure then the following Proposition gives us [Man80,
(II.1)] and [Yan83, Sec 2. , Cor.1] for rings with finitely many minimal prime
ideals. Similarly if η is the identity then it gives us Theorem 1.6 of [GT80].

132



Proposition 4.1.26. (Faithful flat descent) Let f : A → A′ be a faitfully
flat ring homomorphism of rings with finitely many minimal prime ideals and
j : A → B a morphism with Spec(j) surjective. Set B′ := A′ ⊗A B. If
qB′/A′ : A′ → (B′/A′)η is an isomorphism then so is qB/A : A→ (B/A)η.

Proof. Note that if qB′/A′ is an isomorphism then it follows that A′ → B′

must necessarily be an injection. Lemma 4.1.25 and Lemma 1.4.22 now let us
conclude.

The following is the analogue of Corollary (II.2) of [Man80] and Corollary
1.7 of [GT80].

Corollary 4.1.27. Let A→ A′ be a faithfully flat ring homomorphism of rings
with finitely many minimal prime ideals, and A (resp. A′) denote the integral
closure of A (resp. of A′) in Q(A) (resp. in Q(A′)). If

qA′/A′ : A′ → (A′/A′)η

is an isomorphism then so is

qA/A : A→ (A/A)η

In particular if A is a local Noetherian ring then qA/A is an isomorphism if
this is the case when A is replaced with its completion.

Proof. By Lemma 1.4.7 we have that A′ and A′ ⊗A A have the same total
ring of fractions hence we have an inclusion A′ ⊗A A ⊂ A′. From Lemma
4.1.21 it follows that if qA/A : A → (A/A)η is an isomorphism then so is
A′ → (A⊗A A′/A′)η. By Proposition 4.1.26 we are done.

Study on distinguished opens

We will now begin to make some preparations for the scheme theoretic story to
be considered in the next section.

Lemma 4.1.28. Let A be a ring and f ∈ A be an element of A. Then the
natural map

Nη(A)f → Nη(Af )

is an isomorphism.

Proof. Surjectivity of the map is evident. For injectivity note if x ∈ Nη(A)f
is an element of the kernel then we must necessarily have f · x = 0; hence
x = 0.
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Lemma 4.1.29. For a ring A with finitely many minimal prime ideals and
an element f of A, let φ : A→ B be a map with Spec(φ) surjective. Then the
induced map

((B/A)η)f → (Bf/Af )η

is an isomorphism.

Proof. Let C denote the integral closure of A in B and consider the following
commutative diagram

((C/A)η)f (Cf/Af )η

((B/A)η)f (Bf/Af )η.

By Lemma 4.1.20 both vertical arrows are isomorphisms. Hence we can reduce
to the case where φ is integral. By Proposition 4.1.23 the following sequence of
A-modules is exact:

(B/A)η (Nη(A)×B) Nη(B)
Nη(φ)−tB

Thus by exactness of localization and Lemma 4.1.28 we get an exact sequence
of the form:

((B/A)η)f (Nη(Af )×Bf ) Nη(Bf )
Nη(φf )−tBf

which completes the proof.

Corollary 4.1.30. For a ring A with finitely many minimal prime ideals and
an element f ∈ A the induced map

Mη(A)f → Mη(Af )

is an isomorphism.

Proof. Let Ã denote the normalization of A in
∏
p∈Spec(A),
p minimal

F (k(p)). Then from

Lemma 4.1.29 the induced map

(Ã/A)ηf → (Ãf/Af )η

is an isomorphism and the desired result follows now easily from Proposition
4.1.9.

Lemma 4.1.31. Let A be a ring with finitely many minimal prime ideals and
φ : A→ B be a morphism of rings with Spec(φ) surjective.
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1. If A→ (B/A)η is an isomorphism and f is any element of A then

Af → (Bf/Af )η

is an isomorphism.

2. Suppose that f1, . . . , fn ∈ A generate the unit ideal (1) = A and that the
induced maps

Afi → (Bfi/Afi)η
∼= (B/A)ηfi

are all isomorphisms. Then

qB/A : A→ (B/A)η

is an isomorphism.

Proof. The first assertion follows directly from 4.1.29 and part (2) is proved in
a standard manner.

4.2 The case of schemes

We use the notation of Section 4.1 throughout.

Construction 4.2.1. For a scheme X let Nη(X) be the Zariski sheaf on X
given by U 7→ Nη(X)(U) :=

∏
x∈U F (k(x)) and the obvious restriction maps.

We also have a canonical map tX : OX → Nη(X) giving Nη(X) the structure
of an OX -algebra. For any map f : Y → X we have a commutative diagram

OX f∗OY

Nη(X) f∗Nη(Y ).

f∗(tY )

Nη(f)

(4.2.1)

Here Nη(f) is the unique map such that for any open subset U of X with
y ∈ f−1(U) the following diagram commutes:

Nη(X)(U) Nη(Y )(f−1(U))

k(f(y)) k(y).

Nη(f)

fy/f(y)

(4.2.2)

Note that if Nη(f) is an isomorphism then f has to give a bijection of underlying
sets.

For a full subcategory P of the category of schemes we let MP
η (X) be the

sub-presheaf of Nη(X) such that for an open subset U of X the set

MP
η (X)(U) ⊂ Nη(X)(U) (4.2.3)
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consists of exactly those elements (fx)x∈U ∈ Nη(X)(U) such that if g : Y → X
is a morphism with Y ∈ P then

Nη(g)(U)((fx)x∈U ) ∈ im(g∗tY (U)). (4.2.4)

The map tX factors through MP
η (X) and we let qX denote this map OX →

MP
η (X) . Furthermore if f : Y → X is a morphism then Nη(f)|MP

η (X) factors
through f∗MP

η (Y ) thus we get a morphism MP
η (f) : MP

η (X) → f∗MP
η (Y ).

Note that if X is a reduced scheme with X ∈ P then qX is an isomorphism.
Throughout we let Vη denote the full subcategory of schemes where objects

are spectrums of valuation rings R with η(R(0)) an isomorphism. We shall
always denote M

Vη
η by Mη. Finally observe that if g : Z → Y and f : Y → X

are morphisms of schemes then we have

Nη(f ◦ g) = f∗Nη(g) ◦Nη(f);

Mη(f ◦ g) = f∗Mη(g) ◦Mη(f).

Lemma 4.2.2. Let X be a scheme where quasi-compact opens have finitely
many irreducible components. The following statements hold true:

1. The presheaf Mη(X) is a Zariski sheaf.

2. The map tX : OX → Nη(X) makes Nη(X) into a quasi-coherent sheaf
of OX-algebras such that for any affine open Spec(A) of X we have

Nη(X)|Spec(A)
∼= Ñη(A). (4.2.5)

3. The map qX : OX →Mη(X) makes Mη(X) into a quasi-coherent sheaf
of OX-algebras such that for any affine open Spec(A) of X we have

Mη(X)|Spec(A)
∼= M̃η(A). (4.2.6)

Proof. For (1): Note first that the presheaf Nη(X) is a Zariski sheaf. Hence
to see that Mη(X) is a Zariski sheaf it is enough to show that if U is any
open subset of X and u = (ux)x∈U an element of Nη(X)(U) such that there
is an open cover {Ui} of U with u|Ui ∈Mη(X)(Ui) then we must necessarily
have u ∈ Mη(X)(U). To see this just notice that if g : Spec(R) → X is a
morphism with Spec(R) ∈ Vη then since g∗tSpec(R) is injective and both g∗OY
and g∗Nη(Y ) are sheaves we see easily that the Nη(g)(u) is in the image of
g∗tSpec(R).

For (2): For any affine open subscheme Spec(A) of X we have an obvious
isomorphism

Nη(X)(Spec(A))→ Nη(A) (4.2.7)

and since the map Nη(A)f → Nη(Af ) is an isomorphism for any f ∈ A
(Lemma 4.1.28) we can conclude.
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For (3): We first claim that if Spec(A) is an affine open subscheme of
X then the image of Mη(X)(Spec(A)) in Nη(A) under the canonical isomor-
phism Nη(X)(Spec(A)) → Nη(A) is exactly the subring Mη(A). One inclu-
sion is rather obvious so suppose that u = (ux)x∈Spec(A) ∈ Nη(X)(Spec(A))
maps to an element of Mη(A). If g : Spec(R) → X is any morphism with
Spec(R) ∈ Vη we must show that the element Nη(g)(u) is in the image
of tSpec(R)(g

−1(Spec(A)). Since we don’t necessarily have g−1(Spec(A)) =
Spec(R) we cannot conclude straight away, but since g−1(Spec(A)) can be
covered by affine opens which by Lemma 1.3.5 can be taken to be valuation
rings with the same function field as R the claim follows easily.

Corollary 4.1.30 now lets us conclude the proof.

If X is a scheme where quasi-compact opens have finitely many irreducible
components then in light of Lemma 4.2.2 we get a morphism

µη : Xη = Spec
X

(Mη(X))→ X (4.2.8)

such that if f : X → Y is a morphism of schemes whose quasi-compact
opens have finitely many irreducible components then we have a morphism
fη : Xη → Y η fitting into a commutative diagram

Xη Y η

X Y.

fη

µη(X) µη(Y )

f

(4.2.9)

Proposition 4.2.3. Let X be a scheme such that any quasi-compact open
subset has finitely many irreducible components. Then the following statements
hold true:

1. The morphism µη(X) : Xη → X is integral.

2. The morphism µη(X) induces a bijection of underlying sets.

3. For any x′ ∈ Xη with x = µη(X)(x′) ∈ X the map η(k(x)) → F (k(x))
factors through the the map of residue fields (µη(X))x′/x : k(x)→ k(x′).
In particular µη(X) is a universal homeomorphism.

4. The map Nη(µ
η(X)) : Nη(X)→ (µη(X))∗Nη(X

η) is an isomorphism.

Proof. Follows immediately from Lemma 4.2.2 and Proposition 4.1.10.

Corollary 4.2.4. Let f : X → Y be a morphism of schemes where quasi-
compact opens have finitely many irreducible components. Then:

1. f is integral if and only if the induced morphism fη is integral.

2. f is surjective if and only if fη is surjective.
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3. fη is an isomorphism if and only if f is affine and the morphism Mη(f) :
Mη(Y )→ f∗Mη(X) is an isomorphism.

Moreover if the equivalent conditions of (3) are satisfied then we also
have:

4. The morphism f induces a bijection of underlying sets.

5. For any x ∈ X with y = f(x) the map η(k(y)) : k(y)→ F (k(y)) factors
through the induced map of residue fields fx/y : k(y)→ k(x).

Proof. For (1): Suppose that f is integral. Then since f ◦µη(X) and the diag-
onal δY η/Y 1 are both integral it follows that fη is integral (one can also deduce
this from the fact that µη(Y ) is integral without considering the diagonal).
Conversely if fη is integral then f ◦µη(X) is also integral. From which it follows
that if U is any affine open of Y then the induced map U ×Y Xη → U ×Y X
is a surjective integral morphism from an affine scheme hence by [Stacks, Tag
05YU] the scheme U ×Y X is affine proving that f is an affine morphism. Now
we can apply Corollary 4.1.11 to see that f is integral.

For (2): This follows immediately from part (2) of Proposition 4.2.3.
For (3): It is clear from the construction of fη that if this is an isomorphism

then Mη(f) is an isomorphism, furthermore in this case it follows from part
(1) that f is integral hence affine. Conversely if f is affine with Mη(f) an
isomorphism then from Corollary 4.1.11 we easily deduce that f is integral
and induces a bijection of underlying sets. Thus f gives a homeomorphism of
underlying topological spaces and so does fη and since (fη)# is an isomorphism
it follows that fη is an isomorphism.

For (4): This is clear.
For (5): Follows from the affine case (Corollary 4.1.11).

Corollary 4.2.5. Let f : X → Y be morphism of schemes whose quasi-compact
opens have finitely many irreducible components. Suppose in addition that f is
integral and that Nη(f) : Nη(Y )→ f∗Nη(X) is an isomorphism. Then fη is
an isomorphism.

Proof. By Part (3) of Corollary 4.2.4 it is enough to show that Mη(f) is
an isomorphism. To this extent it is enough to show that Mη(f)(U) is an
isomorphism whenever U is an affine open of Y . By Lemma 4.2.2 this now
follows from Corollary 4.1.14.

1Throughout this thesis we occasionally use the following basic fact without further
mention: If P is a class of morphisms between schemes which is closed under composition
and base change and f1 : X1 → X2, f2 : X2 → X3 are morphisms of schemes such that
f2 ◦ f1 is in P and the diagonal δX2/X3

is in P then f1 is necessarily also in P (see [Vak13,
Thm.10.1.19]).
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Corollary 4.2.6. For a scheme X where quasi-compact opens have finitely
many irreducible components the morphism µ(Xη) : (Xη)η → Xη is an isomor-
phism.

Proof. Follows from part (4) of Proposition 4.2.3 and Corollary 4.2.5.

Proposition 4.2.7. Let X be a scheme such that every quasi-compact open
has finitely many irreducible components. Then for any integral morphism
f : Y → X such that Nη(f) : Nη(X) → f∗Nη(Y ) is an isomorphism there
exists a unique morphism τ(f) : Xη → Y such that µη(X) = f ◦ τ(f).

Proof. Existence follows immediately from Corollary 4.2.5. To prove the
uniqueness of τ(f) it is enough to prove that if g is any other morphism
satisfying µη(X) = f ◦ g then τ(f) and g must agree over an affine open cover
of X. This follows from Proposition 4.1.17.

Lemma 4.2.8. Let f : X → Y be a morphism of schemes whose quasi-compact
opens have finitely many irreducible components. Then fη : Xη → Y η is the
unique morphism that can fill the dotted arrow in the following commutative
diagram

Xη Y η

X Y.

µη(X) µη(Y )

f

(4.2.10)

Proof. Since Xη is reduced and µη(Y ) radicial it follows immediately from
Corollary 1.4.29.

Lemma 4.2.9. Let p : X ′ → X be a surjective morphism of schemes where
quasi-compact opens have finitely many irreducible components. Then the
induced morphism pη : (X ′)η → Xη is an epimorphism in the category of
schemes.

Proof. Follows because pη is a surjective morphism to a reduced scheme.

Proposition 4.2.10. Let X be a scheme such that every quasi-compact open
has finitely many irreducible components. Suppose that f : Y → Xη is an
integral morphism from a reduced scheme Y such that Nη(f) is an isomorphism.
Then f is an isomorphism.

Proof. Consider the commutative diagram

OXη f∗OY

Mη(X
η) f∗Mη(Y ).

qXη f∗qY

Mη(f)

(4.2.11)
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By Corollary 4.2.6 the morphism qXη is an isomorphism and by Corollary 4.2.5
and Corollary 4.2.4 it follows that Mη(f) is an isomorphism. Thus for any open
subset U of X the map f∗(qY ) is surjective and since Y is reduced it is in fact
an isomorphism. Now since f is integral hence closed and induces a bijection
of underlying sets it follows that f gives a homeomorphism of underlying
topological spaces. Thus qY is an isomorphism from which we conclude that f
must be an isomorphism.

Lemma 4.2.11. Let f : X → Y be a morphism of schemes where every quasi-
compact open subset has finitely many irreducible components. Then the induced
morphism fη : Xη → Y η is universally closed if and only if f is.

Proof. Suppose first that f is closed. Then since both µη(X) and µη(Y )
are universal homeomorphisms it follows that µη(Y ) ◦ fη is universally closed.
Moreover since the diagonal morphism δY η/Y is also universally closed it follows
that fη must necessarily be universally closed.

For the converse statement suppose that fη is universally closed and let Z →
Y be any morphism of schemes. The commutative diagram from Lemma 4.2.8
induces the following commutative diagram:

Z ×Y Xη Z ×Y Y η

Z ×Y X Z

where the vertical maps are universal homeomorphisms and the upper horizontal
map is closed by assumption. We now easily conclude that the lower horizontal
map must also be closed.

We summarise the main results in this section here:

Theorem 4.2.12. Let X be a scheme whose quasi-compact open subsets have
finitely many irreducible components. The following statements hold true:

1. The morphism µη(X) : Xη → X is a universal homeomorphism such
that for any point x′ ∈ Xη lying over x ∈ X the field extension η(k(x)) :
k(x)→ F (k(x)) factors through the induced map of residue fields µη(X)x′/x :

k(x)→ k(x′).

2. For any integral morphism f : Y → X such that Nη(f) : Nη(X) →
f∗Nη(Y ) is an isomorphism there exists a unique morphism τ(f) : Xη →
Y such that µη(X) = f ◦ τ(f).

3. If f : Y → Xη is an integral morphism from a reduced scheme Y with
Nη(f) an isomorphism then f is an isomorphism.
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4. If f : X → Y is a morphism to a scheme Y whose quasi-compact open sub-
sets have finitely many irreducible components then there exists a unique
morphism fη : Xη → Y η making the following diagram commutative:

Xη Y η

X Y.

µη(X) µη(Y )

f

(4.2.12)

In particular µIdX : XId → X is the semi-normalization of X and µ(−)PerfX :
X(−)Perf → X is the absolute weak normalization of X.

Proof. 1 follows from Proposition 4.2.3, 2 is Proposition 4.2.7, 3 is Proposition
4.2.10 and finally the last part 4 follows from Lemma 4.2.8.

Also integrality, surjectivity and universal closedness are preserved and
reflected by the (−)η functor:

Proposition 4.2.13. Let f : X → Y be a quasi-compact morphism of schemes
whose quasi-compact opens have finitely many irreducible components. Then f
is integral (resp. surjective, resp. universally closed) if and only if fη is.

Proof. The statement concerning integrality and surjectivity were both proved
in Corollary 4.2.4. The final statement regarding universal closedness is exactly
Lemma 4.2.11.

The relative case

Construction 4.2.14. For a surjective affine morphism of schemes g : Z → X
whose quasi-compact open subsets have finitely many irreducible components
we let Mη(Z/X) be the pullback of g∗qZ : g∗OZ → g∗Mη(Z) along Mη(g) :
Mη(X)→ g∗Mη(Z). Note that Mη(Z/X) considered as a sheaf of OX -modules
is easily seen to be isomorphic to the kernel of the following map

Mη(X)× g∗OZ
Mη(g)−g∗qZ→ g∗Mη(Z) (4.2.13)

hence it follows from Lemma 4.2.2 that Mη(Z/X) is a quasi-coherent sheaf of
OX -algebras.

We set (Z/X)η := Spec
X

(Mη(Z/X))
µη(Z/X)→ X.

More generally for a surjective quasi-compact and quasi-separated morphism
of schemes g : Z → X whose quasi-compact open subsets have finitely many
irreducible components we set

Mη(Z/X) := Mη(Spec
X

(g∗OZ)/X) (4.2.14)

and (Z/X)η := Spec
X

(Mη(Z/X))
µη(Z/X)→ X. Note that we have an obvious

monomorphism Mη(Z/X) → g∗OZ which thus induces an X-morphism g :
Z → (Z/X)η.
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Proposition 4.2.15. Let g : Z → X a surjective quasi-compact and quasi-
separated morphism of schemes whose quasi-compact open subsets have finitely
many irreducible components. Then the following statements hold true:

1. The morphism µη(Z/X) : (Z/X)η → X is integral.

2. The morphism µη(Z/X) induces a bijection of underlying sets.

3. For any x′ ∈ (Z/X)η with x = µη(Z/X)(x′) ∈ X the map η(k(x)) :
k(x) → F (k(x)) factors through the map of residue fields µη(Z/X)x :
k(x)→ k(x′).

4. The map Nη(µ
η(Z/X)) : Nη(X)→ µη(Z/X)∗Nη((Z/X)η) is an isomor-

phism.

5. For any factorization of g of the form

Z Y X

g

f ′ f (4.2.15)

where f is integral and the map Nη(f) : Nη(X) → f∗Nη(Y ) is an
isomorphism there exists a unique map τ(f) : (Z/X)η → Y such that
µη(Z/X) = f ◦ τ(f).

Proof. Parts (1) through (4) follow directly from Proposition 4.1.19. For the last
part note that since the f is an affine morphism we can replace the morphism
g : Z → X with Spec

X
(g∗OZ → X) and hence assume that g is affine. From

Corollary 4.2.5 it follows that the map Mη(f) : Mη(X) → f∗Mη(Y ) is an
isomorphism. Thus we can consider the map

Mη(f)−1 ◦ f∗(qY ) : f∗OY →Mη(X) (4.2.16)

which together with f∗(f ′#) : f∗OY → g∗OZ uniquely determine a morphism of
OX -algebras f∗OY → µη(Z/X)∗(O(Z/X)η) and hence give us an X-morphism
τ(f) : (Z/X)η → Y . The uniqueness of this morphism follows easily from the
affine case (Proposition 4.1.19).

Corollary 4.2.16. Let g : Z → X be a surjective quasi-compact and quasi-
separated morphism of schemes whose quasi-compact open subsets have finitely
many irreducible components. Suppose that g factors as Z f ′→ Y

f→ X were f
is integral and the map Nη(f) is an isomorphism. Then the schemes (Z/X)η

and (Z/Y )η are canonically isomorphic.

Proof. Follows easily from the universal property (Proposition 4.2.15 part
Item 5).
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Lemma 4.2.17. Let p : Z → X be a surjective quasi-compact and quasi-
separated morphism of schemes whose quasi-compact opens have finitely many
irreducible components. The following are equivalent:

1. The morphism µη(Z/X) : (Z/X)η → X is an isomorphism.

2. For every affine open U of X the induced morphism U ×X(Z/X)η → U
is an isomorphism.

3. There exists an affine cover {Ui} of X such that the induced morphism
Ui×X(Z/X)η → Ui is an isomorphism for every i.

Proof. Clearly (1) implies (2) which again implies (3). Furthermore by Lemma 4.1.31
it follows from affine communication that (2) and (3) are in fact equivalent.
Finally if (2) holds then it follows easily that µη(Z/X) : (Z/X)η → X is a
homeomorphism with µη(Z/X)# : OX → µη(Z/X)∗O(Z/X)η an isomorphism
thus µη(Z/X) is an isomorphism.

Faithfully flat descent for schemes

Lemma 4.2.18. Let f : Y → X be a faithfully flat morphism locally of finite
presentation. The following statements hold true:

1. If every quasi-compact open subset of X has finitely many irreducible
components then so does every quasi-compact open subset of Y .

2. Any affine open subset U of X has an affine cover U = ∪i∈I Spec(Ai)
such that for each i ∈ I there is some affine open subset Spec(Bi) of Y
such that f(Spec(Bi)) = Spec(Ai) or in other words the corresponding
map of rings Ai → Bi is faithfully flat.

Proof. For (1): Let V be any quasi-compact open subset of Y then since f is
(universally) open ([Stacks, Tag 01UA]) it follows that f(V ) is open and we
easily see that it is also quasi-compact. Furthermore since f is necessarily locally
of finite type and generic points are mapped to generic points it follows then
easily that any quasi-compact open contained in f−1(f(V )) must necessarily
have finitely many irreducible components, thus we conclude that V has finitely
many irreducible components. For (2): We may reduce to the case where X
is affine, say X = Spec(A). For any point x ∈ X let Spec(B) be an affine open
of Y such that the open subset f(Spec(B)) contains the point x. We can then
find some g ∈ A such that x ∈ D(g) and D(g) ⊂ f(Spec(B)). This then easily
implies that the induced map Spec(Bg)→ Spec(Ag) is surjective. Since x ∈ X
was arbitrary we can conclude.

Corollary 4.2.19 (Faithfully flat descent). Let p : Z → X be a surjective
integral morphism of schemes whose quasi-compact opens have finitely many
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irreducible components. Suppose that f : Y → X is a faithfully flat mor-
phism locally of finite presentation from a scheme Y . If µη(Y ×X Z/Y ) is an
isomorphism then so is µη(Z/X).

Proof. Suppose that µη(Y ×X Z/Y ) is an isomorphism. To check if µη(Z/X)
is an isomorphism we may by Lemma 4.2.17 check this on an arbitrary affine
cover hence by Lemma 4.2.18 2 we may assume that all schemes Y,X and Z
are affine. The result follows now from Proposition 4.1.26.

We denote the normalization of a scheme X by Xn.

Corollary 4.2.20. Let X be a scheme whose quasi-compact opens have finitely
many irreducible components and f : Y → X be a faithfully flat morphism
locally of finite presentation. If the morphism

µη(Y n/Y ) : (Y n/Y )η → Y (4.2.17)

is an isomorphism then so is

µη(Xn/X) : (Xn/X)η → X (4.2.18)

Proof. By Lemma 4.2.17 this can be checked on an arbitrary cover of X and by
Lemma 4.2.18 2 we reduce to the case where Y and X are affine. By Corollary
4.1.27 we are done.

Relations with Manaresi’s description

Lemma 4.2.21. Suppose X1, X2 and X3 are locally ringed spaces p : X1 →
X2, f1 : X1 → X3 morphisms of locally ringed spaces where the map p is
surjective. If f2 : X2 → X3 is a morphism of ringed spaces such that f1 = f2 ◦p
then f2 is necessarily a morphism of locally ringed spaces.

Proof. This is easy.

Lemma 4.2.22. Suppose that X and Z are schemes whose quasi-compact open
subsets have finitely many irreducible components. If p : Z → X is a morphism
satisfying the following conditions:

1. p is quasi-compact and quasi-separated.

2. There exists a surjective quasi-compact universally closed morphism p
′

:
Z
′ → X and an open cover Z ′ = ∪i∈IUi such that for every i ∈ I the

restriction p′ |Ui factors through p. In particular p is necessarily surjective.

3. For the fixed natural transformation η : IdFields → F we have that for any
point x ∈ X there exists some zx ∈ p−1({x}) such that if (k(zx))pi ⊂ k(zx)
denotes the purely inseparable closure of k(x) in k(zx) then the induced
map F (k(x))→ F ((k(zx))pi) is an isomorphism.

144



Then
(Z ×X Z)red Z (Z/X)η

pr1

pr2

p
(4.2.19)

is a co-equalizer diagram in the category of schemes.

Proof. To see that the maps p1 = p ◦ pr1 and p2 = p ◦ pr2 coincide let
z′ ∈ (Z ×X Z)red be any point and note that since µη(Z/X) : (Z/X)η → X is
a bijection of sets we must necessarily have p1(z′) = p2(z′) ∈ (Z/X)η and we
denote this common point by x′. Furthermore from our standing assumption
on the natural transformation η and Proposition 4.2.15 Item 3 it follows that if
x is the image of x′ in X then the induced map of residue fields k(x)→ k(x′)
is purely inseparable hence it follows that p1 and p2 must agree on the level of
residue fields as well thus p1 = p2.

Now suppose that f : Z → Y is any morphism such that f ◦ pr1 = f ◦ pr2 :
(Z ×X Z)red → Y . Note that this implies in particular that if p(z1) = p(z2) ∈ X
then f(z1) = f(z2) ∈ Y .

Thus given x ∈ X we set (fX)top(x) := f(zx). This gives us a map of sets
(fX)top : |X| → |Y |. Hence on the level of maps of underlying sets we have f =
(fX)top ◦ p. Thus for any subset Y ′ ⊂ Y we have f−1(Y ′) = p−1((fX)−1

top(Y
′)).

By assumption (2) it follows easily that the map of underlying topological
spaces |p| : |Z| → |X| is a quotient map hence we conclude that the map of
sets (fX)top is continuous.

Pick now x ∈ X and let zx ∈ Z be an element lying over x satisfying
the condition given in (3), i.e. F (k(x))→ F (k(zx)pi) is an isomorphism. By
assumption and Lemma 1.4.23 we have that the image of k(f(zx)) → k(zx)
is contained in k(zx)pi. If z ∈ Z is any other element lying over x then
f(z) = f(zx). Denote f(z) by y. If we consider the diagram

k(y) k(zx)pi k(zx)

k(z) (k(z)⊗k(x) k(zx)pi)red (k(zx)⊗k(x) k(z))red

(4.2.20)

we have that the outer rectangle commutes by assumption from which we
easily deduce that the leftmost square is commutative. Then since (k(z)⊗k(x)

k(zx)pi)red is a field it follows that the induced map F (k(y)) → F (k(z))
coincides with the compositions

F (k(y))→ F (k(zx)pi)
∼=→ F (k(x))

F (px)→ F (k(z)). (4.2.21)

From this one easily concludes that if z′x ∈ Z is any other point lying over x
satisfying the condition given in ((3)), then we have an equality

(F (k(y))→ F (k(zx)pi) ∼= F (k(x))) = (F (k(y))→ F (k(z′x)pi) ∼= F (k(x))).
(4.2.22)
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We denote this common map by γx : F (k((fX)top(x)))→ F (k(x)).
Now for V an open subset of Y we let γ(V ) : Nη(Y )(V )→ ((fX)top)∗Nη(X)(V )

be the unique map such that for any x ∈ ((fX)top)
−1(V ) with y = (fX)top(x) ∈

V the diagram

Nη(Y )(V ) Nη(X)((fX)−1
top(V ))

F (k(y)) F (k(x))
γx

(4.2.23)

commutes. This gives us a map of sheaves of rings γ : Nη(Y )→ ((fX)top)∗Nη(X).
Note that

Nη(f) = Nη(p) ◦ γ. (4.2.24)

We will now show that the restriction of Nη(f) to Mη(Y ) factors through
f∗Mη(X). To this extent suppose that g : Spec(R) → X is a morphism
with R a valuation ring with η(R(0)) an isomorphism. We need to show
that for any open V of Y the image of [((fX)top)∗(Nf (g))] ◦ γ(V )|Mη(Y )(V )

is contained in the image of ((fX)top)∗g∗(tSpec(R))(V ). By assumption 2 and
Lemma Lemma 1.3.12 it follows easily that we can find a valuation ring R′

together with maps g′ : Spec(R′)→ Z and h : Spec(R′)→ Spec(R) such that
p ◦ g′ = g ◦ h with h surjective. We claim that the map f ◦ g′ can be factored
through h. Indeed if z is the image of the generic point of Spec(R′) in Z
and y = f(z) ∈ Y , x = p(z) ∈ X then we have a diagram where each square
commutes

k(y) R′(0) R′(0)

R(0)

F (k(y)) F (k(x)) F (R(0)) F (R′(0)).

idR′
(0)

∼=

(4.2.25)

Thus by picking an affine open of Y say Spec(A) containing the image of f ◦ g′
we see that the image of the induced morphism of rings A → R′ must be
contained in R′ ∩R(0) = R from which we deduce that there exists a morphism
g′′ : Spec(R)→ Y such that f ◦ g′ = g′′ ◦h. Since Nη(f) = ((fX)top)∗Nη(p) ◦ γ
and since g′′∗Nη(h) is a monomorphism we conclude the equality

((fX)top)∗(Nη(g)) ◦ γ = Nη(g
′′). (4.2.26)

Thus for any open V of Y the image of [((fX)top)∗(Nη(g))] ◦ γ(V )|Mη(Y )(V )

is contained in the image of ((fX)top)∗(tSpec(R))(V ) which now immediately
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implies that the restriction of Nf (f) to Mη(Y ) factors through f∗Mη(X). Thus
we have a map τ : Mη(Y )→ (fX)top∗Mη(X) such that

Mη(f) = (fX)top∗Mη(p) ◦ τ. (4.2.27)

Thus by the definition of Mη(Z/X) we get induced a morphism

(f ′)# : OY → (fX)top∗Mη(Z/X) ∼= (fX)top∗µ
η(Z/X)∗O(Z/X)η , (4.2.28)

hence we get a map of ringed spaces

f ′ := (fX ◦ µη(Z/X), f ′
#

) : (Z/X)η → Y (4.2.29)

such that f = f ′ ◦ p. It follows immediately from Lemma 4.2.21 that f ′ is a
morphism of schemes. Uniqueness of f ′ follows because p is an epimorphism in
the category of schemes (being surjective and giving an injection on the level
of sheaves).

Remark 4.2.23. The condition (2) of Lemma 4.2.22 can be replaced with
requiring the morphism p to subtrusive; since such morphisms yield a quotient
map of the underlying topological spaces and they have a valuative criterion
(Remark 1.3.13) the same proof will work. Moreover we emphasize that [Ryd10,
Thm. 7.4] is essentially a non-Noetherian generalization of Lemma 4.2.22.

In the case of rings with finitely many minimal prime ideals we now get
another proof of Manaresi’s characterization of the weak normalization [Man80,
Thm. I.6].

Corollary 4.2.24 (Manaresi). Let A ⊂ B be an integral extension of rings
both of which have finitely many minimal prime ideals. Let ∗B(A) denote the
weak normalization of A in B. Then the following diagram is an equalizer:

∗B(A) B (B ⊗A B)red
(1⊗)red

(⊗1)red
(4.2.30)

Proof. Letting F be the perfect closure (−)Perf the result follows immediately
from Lemma 4.2.22.

Corollary 4.2.25. Suppose that p : Z → X is a surjective quasi-compact,
quasi-separated and universally closed of schemes whose quasi-compact opens
have finitely many irreducible components. Then if every point x ∈ X has a
point zx ∈ Z lying over x such that the induced extension k(x)→ (k(zx))pi is
an isomorphism then we have the equality

(Z/X)Id = (Z/X)(−)Perf . (4.2.31)

In particular if A → B is an integral extension of rings where every point
p ∈ Spec(A) has a point q ∈ Spec(B) lying over p such that the induced
extension k(p)→ (k(q))pi is trivial then the semi and weak normalizations of
A in B coincide.
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Proof. Follows immediately from Lemma 4.2.22.

Remark 4.2.26. Corollary 4.2.25 can also be deduced from the universal
properties.

Limit description

In [Ryd10] it is explained that the absolute weak normalization of a scheme X
is the limit over all universal homeomorphisms of finite presentation over X.
We will now give a similar description of Xη.

Lemma 4.2.27. Let X be a Noetherian scheme. The morphism

µη(X) : Xη → X (4.2.32)

is the directed limit of all finite morphisms fλ : Xλ → X such that

Nη(fλ) : Nη(X)→ fλ∗Nη(Xλ) (4.2.33)

is an isomorphism.

Proof. By [Stacks, Tag 0817] the quasi-coherent sheaf of OX -algebras Mη(X)
is the direct colimit of its finite quasi-coherent OX -subalgebras. If Λ is any such
finite quasi-coherent OX -subalgebra, then letting fλ : Spec

X
(Λ)→ X be the

induced map it is clear that µη(X) factors through fλ and that Xη → Spec
X

(Λ)
is surjective. Thus Nη(fλ) is an isomorphism.

To complete the proof it is thus enough to show that if f : Y → X is any
finite morphism with Nη(f) an isomorphism then there exists some finite quasi-
coherent OX -subalgebra of Mη(X) which we denote Λ′ such that Spec

X
(Λ′)

factors through f . To this extent note that by Corollary 4.2.5 it follows that
Λ′ := f∗(OY red) is a finite quasi coherent sub-sheaf of Mη(X) satisfying the
desired property.

4.3 Applications of the η-construction to
representable sheaves

From this point on until the end of the thesis every scheme is assumed to be
separated. Moreover in this section S will always denote a Noetherian scheme
unless we state otherwise.

Describing representable sheaves in non-subcanonical
topologies

In this last part of the chapter we will for a suitable topology t describe the
sheafification of a representable presheaf in terms of the pointwise η-construction.
The main ideas behind the proof are not so different from those of [Ryd10,
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Theorem 8.16] in the sense that we both essentially reduce the argument to
a certain diagram being a co-equalizer and then apply a limit argument to
conclude the proof.

We will need the following lemma:

Lemma 4.3.1. The following assertions hold true:

1. For a surjective quasi-compact and quasi-separated morphism p : Z → X
of schemes where quasi-compact opens have finitely many irreducible
components we have an isomorphism (Zη/Xη)η ∼= Xη.

2. Suppose that T1 → T, T2 → T are two finite type morphisms to a locally
Noetherian scheme T Then the canonical morphism

(T1×
T
T2)η → (T1

η ×
T η
T2

η)red (4.3.1)

is an epimorphism in the category of schemes

Proof. The first assertion follows immediately from Proposition 4.2.10. For the
second assertion it is enough to show that the map

(T1×
T
T2)η → (T1

η ×
T η
T2

η)red (4.3.2)

is surjective. To this extent note first that by the universal property of T1×T T2

we get an induced map

π : T1
η ×
T η
T2

η → T1×
T
T2 (4.3.3)

and the map
µη(T1×

T
T2) : (T1×

T
T2)η → (T1×

T
T2) (4.3.4)

factors as
(T1×

T
T2)η → T1

η ×
T η
T2

η π→ T1×
T
T2. (4.3.5)

Hence it is enough to show that π gives a bijection of underlying sets. Surjec-
tivity is easy. For injectivity suppose that

γ1, γ2 : Spec(E)→ T1
η ×
T η
T2

η (4.3.6)

are such that π ◦ γ1 = π ◦ γ2. Then by universal injectivity of Tiη → Ti for
i = 1, 2 it follows easily that we must have γ1 = γ2 which completes the
proof.

Lemma 4.3.2. Let t be a topology on the category of Noetherian schemes over
S satisfying the following properties

149



1. If {Ti
pi→ T}i∈I is a t-covering of the Noetherian scheme T then so is the

induced morphism
(pi)i∈I :

∐
i∈I

Ti → T (4.3.7)

2. For every t-covering p : W → T the induced morphism pη : W η → T η

satisfies the conditions of Lemma 4.2.22.

Then for any scheme X over S the presheaf on the category of Noetherian
schemes over S

HomS((−)η, X) (4.3.8)

is a t-sheaf.

Proof. Suppose we have a t-covering {Ti
pi→ T}i∈I and morphisms fi : Ti

η → X
such that for every pair i, j ∈ I letting pr1, pr2 denote the projections from
Ti×T Tj on the first and second factor respectively we have

fi ◦ pr1
η = fj ◦ pr2

η (4.3.9)

Set W :=
∐
i∈I Ti and note that we get induced S-morphisms p = (pi)i∈I :∐

Ti → T and f : W → X such that f |Ti = fi for all i ∈ I.
Since (−)η commutes with coproducts it follows easily that if q1, q2 denote

the projections from W ×T W onto the first and second factor respectively then
we must have

f ◦ q1
η = f ◦ q2

η. (4.3.10)

Thus if p1, p2 denote the projection from (W η ×T η W η)red onto the first and
second factors respectively it follows from Lemma 4.3.1 that we must have

f ◦ p1 = f ◦ p2. (4.3.11)

Since pη : W η → T η satisfies the conditions of Lemma 4.2.22 by assumption, we
get induced a unique morphism fT : (W η/T η)η = T η → X such that f = fT ◦p
hence fT is also the unique morphism satisfying fi = fT ◦ pi for every i ∈ I.
Since pη is an epimorphism in the category of schemes (being a surjective
morphism to a reduced scheme) it follows that fT is a morphism of S-schemes.
Thus proving that HomS((−)η, X) is a sheaf in the t-topology.

Lemma 4.3.3. Let t1 be a finer topology than t2 on a category C. Suppose
that F → F ′ is a sheafification with respect to t2 and that F ′ is a sheaf with
respect to t1. Then F → F ′ is a sheafification with respect to t1.

Proof. This is easy.

If t is a (Grothendieck) topology on the category of schemes over S (Sch /S)
we shall denote by t|Noeth its restriction to the full subcategory of Noetherian
schemes over S. This means that the coverings of t|Noeth are exactly those
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coverings of t which only involve Noetherian S-schemes. Further we let tη be the
topology on Sch /S where the coverings are (either empty) or the singletons of
the form {p : U ′ → U} where p is a finite morphism with Nη(p) an isomorphism.

Proposition 4.3.4. Let t be a topology on the category of schemes over S such
that t|Noeth satisfies the conditions of Lemma 4.3.2. If the topology t is finer
than tη for some given η : IdFields → F then if X is a scheme locally of finite
type over S the canonical morphism

ΦX/S : hX/S = HomS(−, X)→ HomS((−)η, X)

(f : T → X) 7→ (f ◦ µη(T )).

of presheaves on the category of Noetherian schemes over S is a t′|Noeth-
sheafification for any topology t′ (on Sch /S) finer than tη and coarser than
t.

Proof. By Lemma 4.3.2 the presheaf

HomS((−)η, X) (4.3.12)

is a t|Noeth-sheaf. Hence by Lemma 4.3.3 it is enough to show that ΦX/S is a
tη|Noeth sheafification. To this extent it is enough to show that ΦX/S is both a
local monomorphism and a local epimorphism. To show the former suppose
that T is a Noetherian scheme over S and we have S-morphisms f, g ∈ hX/S(T )
such that ΦX/S(T )(f) = ΦX/S(T )(g). Then since µη(T )red → Tred is an
epimorphism in the category of schemes we have that f |Tred = g|Tred or in
otherwords f and g pullback to the same S-morphism under Tred → T which
is a tη|Noeth-covering of T .

To see that ΦX/S is a local epimorphism let f ′ ∈ HomS(T η, X) be an
element of HomS((−)η, X)(T ). Then using Lemma 4.2.27 we can write T η as
a limit T η = limTλ where the pλ : Tλ → T are finite morphisms with Nη(pλ)
isomorphisms. Now since X is locally of finite presentation over S we have by
Proposition 1.8.8 some S-morphism fλ : Tλ → X such that f ′ coincides with
the composition

T η → Tλ
fλ→ X. (4.3.13)

Furthermore by Proposition 4.2.7 and Lemma 4.2.8 it follows that

fλ ◦ µη(Tλ) = f ′ ◦ pλη (4.3.14)

which completes the proof.

Notation 4.3.5. For a scheme X we shall from now on use the less clunky
notation Xsn in place of XId (and for a morphism f : X → Y we use fsn :

Xsn → Y sn in place of f Id) . Similarly we will use Xawn in place of X(−)Perf

and fawn : Xawn → Y awn in stead of f (−)Perf : X(−)Perf → Y (−)Perf .
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Lemma 4.3.6. Let p : Z → X be a sd-h-covering (resp. an h-covering) of
Noetherian schemes . Then psn (resp. pawn) satisfies the three conditions given
in Lemma 4.2.22 for η = Id (resp. η = (−)Perf ).

Proof. The first condition (1) is checked straightforwardly (recall that we
assume all schemes to be separated in this section). For the second condition
note that by Theorem 3.1.16 we have a proper surjective morphism p′ : Z ′ → X
and a Zariski covering Z ′ = ∪i∈IUi such that p′|Ui factors through p. By
Lemma 4.2.11 the morphism (p′)sn (resp. (p′)awn ) is surjective and universally
closed and since (−)η takes open embeddings to open embeddings we conclude
that the second condition is also satisfied. Finally the last condition (3) is
straightforwardly satisfied.

Definition 4.3.7. We define the uh (resp. cd− uh-topology) on Sch /S to be
the topology where coverings of a scheme U are of the form {p : U ′ → U} where
p is a finite universal homeomorphism (resp. a finite universal homeomorphism
with trivial residue field extensions).

Remark 4.3.8. Note that uh (resp. cd− uh) is exactly t(−)Perf (resp. tId) in
the text preceding Proposition 4.3.4.

From this point on we restrict the h, sd-h, uh and cd − uh topologies to
the category of Noetherian schemes over S and for ease of notation we shall
still denote them by h, sd-h etc. (in place of h|Noeth etc.).

Theorem 4.3.9. Let X be a scheme locally of finite type over S. Then the
following statements hold true:

1. For any topology t on the category of Noetherian S-schemes finer than
the cduh topology and coarser than the sd-h-topology the natural transfor-
mation

hX/S → HomS((−)sn, X)

(f : T → X) 7→ f ◦ µId(T ).

of presheaves on the category of Noetherian schemes is a t-sheafification of
hX/S. Moreover for any Noetherian scheme T we have HomS(T sn, X) =
colimTλ HomS(Tλ, X) where the colimit is over all finite universal home-
omorphisms with trivial residue field extensions of T .

2. For any topology t on the category of Noetherian S-schemes finer than the
uh topology and coarser than the h-topology the natural transformation

hX/S → HomS((−)awn, X)

(f : T → X) 7→ f ◦ µ(−)Perf (T ).
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of presheaves on the category of Noetherian schemes is a t-sheafification of
hX/S. Moreover for any Noetherian scheme T we have HomS(T awn, X) =
colimTλ HomS(Tλ, X) where the colimit is over all finite universal home-
omorphisms of T .

Proof. We prove (1) and (2) simultanously. From Lemma 4.3.6 it follows
that the sd − h topology (resp. the h-topology) satisfies the conditions of
Lemma 4.3.2 when η = Id (resp. η = (−)Perf ). By Proposition 4.3.4 and
Lemma 4.2.27 we are done.

Remark 4.3.10.

1. Item 1 of this Theorem extends most of the statement of ([HK18, Prop.
6.14]) (the isomorphism to hX/Sval being the statement not considered
by us).

2. Item 2 is a special case of [Ryd10, Thm. (8.16)], indeed in loc.cit. X
may be taken to be an algebraic space locally of finite presentation over
S, and the Noetherian conditon is also relaxed a little there.

More on representable sheaves in the h-topologies

Theorem 4.3.9 can be applied to give simple proofs of many of the results of
Section 3.2 of [Voe96] and we can also deduce analogous results for several
related topologies.

For a Grothendieck topology t we let Lt(X/S) denote the t-sheafification
of the representable functor hX/S . The following Corollary is a generalization
of [Voe96, Prop.3.2.5].

Corollary 4.3.11. Let f : X → Y be a morphism of finite type of schemes
locally of finite type over S and t1 any topology that is finer than the uh topology
and coarser than the h-topology and t2 any topology finer than the cduh topology
and coarser than the sd-h topology. Then the following assertions hold true:

1. The morphism Lt1(f) (resp. Lt2(f)) is a monomorphism in the category
of t1 (resp. t2) sheaves if and only if f is radicial.

2. The morphism Lt1(f) (resp. Lt2(f)) is an epimorphism of t1 (resp. t2)
sheaves if and only if f can be refined by a t1 (resp. t2)-covering.

3. The morphism Lt1(f) (resp. Lt2(f)) is an isomorphism if and only if f
is a uh covering (resp. cd− uh covering).

Proof. For (1): Suppose first that f is radicial. Then if T is any Noetherian
S-scheme and α, β are any two morphisms with source T awn (resp. T sn) and
target X such that f ◦ α = f ◦ β then from Corollary 1.4.29 we get α = β.
Conversely suppose that f is not radicial, then by Lemma 1.4.28 we can find
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some field K and two morphisms t1, t2 : Spec(K)→ X such that f ◦ t1 = f ◦ t2
but t1 6= t2. Moreover it is clear that this field can be taken to be perfect hence
Lt1(f) (resp. Lt2(f)) is not a monomorphism.

For (2): This follows easily from the following general fact: If φ : F → G
is a morphism of presheaves on a category with a Grothendieck topology then
the associated map of sheaves is an epimorphism if and only if φ is a local
epimorphism with respect to this topology.

For (3): If f is a uh covering (resp. cduh) covering then it follows
immediately from (1) and (2) that Lt1(f) (resp. Lt2(f)) is an isomorphism.

Conversely if Lt1(f) (resp. Lt2(f)) is an isomorphism. Then it follows from
(1) that f is radicial and from (2) that f can be refined by a t1 (resp. t2) covering.
Recalling that both the t1 and t2 topologies are coarser than the h-topology
we see that since f is necessarily a radicial universal topological epimorphism
it easily follows that f is a universal homeomorphism. It remains to show
that a universal homeomorphism which is a covering in the sd-h-topology is
necessarily a cd− uh covering, but this is easy.

Corollary 4.3.12. Let X and Y be schemes locally of finite type over S and
suppose t is some topology where we have an isomorphism of t-sheaves

Lt(X/S)
∼=→ Lt(Y/S). (4.3.15)

If the topology t is finer than the uh (resp. cd− uh) topology and coarser than
the h (resp. sd-h) topology then there exists an S-scheme Z and finite universal
homeomorphisms (resp. finite universal homeomorphisms with trivial residue
field extensions) of S-schemes f1 : Z → X and f2 : Z → Y .

Proof. By Theorem 4.3.9 and Theorem 4.2.12 Part (4) it follows from Yoneda
Lemma that we get induced an isomorphism f ′ : Xawn → Y awn (resp. f :
Xsn → Y sn) which canonically gives us a morphism of S-schemes f with source
Xawn (resp. Xsn) and target Y . Furthermore by Lemma 4.2.27 and Proposition
1.8.8 there exists some finite universal homeomorphism f1 : Z → X (resp. finite
universal homeomorphism with trivial residue field extensions) and a morphism
f2 : Z → Y such that f factors through f2. One verifies straightforwardly that
f2 is a universal homeomorphism (resp. universal homeomorphism with trivial
residue field extensions) and since both Z and Y are locally of finite type over
S it follows that f2 must necessarily be finite.

The following Lemma is more or less [Voe96, Lemma.3.1.7].

Lemma 4.3.13. Let Y be a Noetherian integral geometrically unibranch Nagata
scheme. Let L be a finite purely inseparable field extension of the field of
functions of Y denoted by K. Then if f : X → Y is the normalization of Y in
L the morphism f is a universal homeomorphism.
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Proof. Note that f : X → Y is a finite surjective morphism (this is where we
are using the Nagata hypothesis) between integral schemes. It is necessarily
equidimensional of dimension zero and by Proposition 1.1.20 it is in fact
universally equidimensional of dimension zero and therefore also necessarily
universally open. By Lemma 1.4.30 and Lemma 1.4.28 it is enough to show that
the diagonal morphism ∆X/Y : X → X ×Y X is surjective. Note that since
f is universally open it follows that every irreducible component of X ×Y X
surjects onto X under either of the two projections. From this we see that
to prove that ∆X/Y is surjective it is enough to show that the kernel of the
multiplication map

L⊗K L→ L (4.3.16)

is contained in the nilradical of L⊗K L. But since the kernel is generated by
elements of the form z⊗K 1−1⊗K z with z ∈ L, and L/K is purely inseparable
this is easy.

Corollary 4.3.14 (See also [Voe96, Prop.3.2.11]). Let Y/S be a Noetherian
integral geometrically unibranch Nagata scheme over S. Let t be any topology
finer than the uh-topology and coarser than the h-topology. Then we have

Lh(Y/S)(T ) = colimL HomS(TL, Y )

where the colimit runs over all finite purely inseparable field extensions of the
field of functions of T and TL denotes the normalization of T in L.

Proof. Just note that if T ′ → T is a finite purely inseparable universal homeo-
morphism then if L is the function field of T ′, it follows from [Stacks, Tag 035I]
that the normalization of T in L denoted f : TL → T must factor through T ′.
By Lemma 4.3.13 and Theorem 4.3.9 we conclude the proof.

Finally the following is a generalization of [Voe96, Proposition 3.2.12].

Corollary 4.3.15. Let X be a scheme locally of finite type over S and let t
be any topology which is either finer than the uh topology and coarser than the
h-topology or finer than the cd−uh topology and coarser than the sd-h-topology.
Then the morphism

hX/S → Lt(X/S) (4.3.17)

of presheaves on the category of Noetherian schemes is an isomorphism if and
only if X is étale over S.

Proof. Suppose first that X is étale over S. Then since surjective morphisms
of reduced schemes are necessarily epimorphisms it follows easily from the
functorial characterisation of étale morphisms ([Stacks, Tag 025K]) that the
map

hX/S → Lt(X/S) (4.3.18)

155

https://stacks.math.columbia.edu/tag/035I
http://stacks.math.columbia.edu/tag/025K


of presheaves is a monomorphism. To show that it is an epimorphism as well
Theorem 4.3.9 tells us that it suffices to show that if T ′ → T is a finite universal
homeomorphism of S-schemes with T ′ reduced and we are given an S-morphism
f : T ′ → X then it must necessarily factor through T . To this extent we first
have from [GD67, Corollaire (17.9.3)] that the graph Γf : T ′ → T ′×S X is
both an open and closed embedding, and moreover since T ′×S X → T ×S X
is a universal homeomorphism it follows that the set theoretical image of Γf in
T ×S X is an open and closed subset of T ×S X which we denote by Z. Note
that the restriction of the projection T ×S X → T to Z (considered as an open
subscheme of T ×S X) is necessarily surjective and universally injective, thus by
loc.cit again we know that the map T ×S X → T has a section g : T → T ×S X
which is necessarily a closed and open embedding with g(T ) = Z. Furthermore
by [GD67, Theorem (17.9.1)] we have that the map Z → T is necessarily an
isomorphism hence f does indeed factor through T .

Conversely suppose that hX/S → Lt(X/S) is an isomorphism. To show that
f is étale it is by [GD67, Proposition (17.14.2)] enough to check the functorial
characterisation of étale morphisms with the additional hypothesis that the
affine S-scheme being Noetherian. Thus suppose Y = Spec(A) is a Noetherian
S-scheme and I a square-zero ideal and let i : Y0 := Spec(A/I) → Y be the
closed embedding. Consider now the following commutative diagram

Lt(X/S)(Y ) Lt(X/S)(Y0)

hX/S(Y ) hX/S(Y0)

i∗

i∗

(4.3.19)

Since i∗ : Lt(X/S)(Y )→ Lt(X/S)(Y0) is an isomorphism by Corollary 4.3.11
and the vertical arrows are isomorphisms by assumption it follows that hX/S(Y )→
hX/S(Y0) is a bijection thus proving that X is étale over S.

156



Chapter 5

Representable monoids in the
h-topology

The purpose of this chapter is to prove a theorem which will play a key role in
the proof of our main Theorems. Indeed we want to compare relative cycles
with morphisms to a commutative monoid in the category of schemes. The
theorem to be proven in this chapter then allows us to transform this problem
to working with h-sheaves instead. This is useful because we then have more
tools to produce maps between our sheaves.

The precise result that we are going to prove is the following Theorem:

Theorem 5.0.1. Let S be a Noetherian scheme and M/S be a commutative
monoid object in the category of schemes over S and t be any Grothendieck
topology finer than the uh topology and coarser than the h topology. Suppose
further that the morphism M → S is flat, locally of finite type and AF (Defini-
tion 1.5.26). Then after restricting the presheaves hM/S and its t-sheafification
Lt(M/S) to the category of semi-normal Noetherian S-schemes the natural
map

hM/S ⊗N Q+ → Lt(M/S)⊗N Q+ (5.0.1)

becomes an isomorphism.

In light of Theorem 4.3.9 Item 2 we can informally say that Theorem 5.0.1
provides a bridge between the absolute weak normalization and the seminor-
malization, or more precisely we have:

Theorem. Let S be a Noetherian scheme and M/S be a commutative monoid
object in the category of schemes over S where the morphism M → S is flat,
locally of finite type and AF (Definition 1.5.26). Then the natural map

HomS((−)sn,M)⊗N Q+ → HomS((−)awn,M)⊗N Q+ (5.0.2)

becomes an isomorphism.
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The heuristic argument for this theorem to hold is that the extension of
scalars makes up for the difference of the degrees of purely inseparable field
extensions arising from the maps T awn → T and T sn → T . Theorem 1.6.7
combined with some elementary number theory and combinatorics makes it
possible to transform this somewhat vague idea into a precise proof.

5.1 Representable sheaves and monoid objects

Let S be a Noetherian scheme and suppose that M/S together with +, 0 is
a commutative monoid object in the category of S-schemes. As discussed
in Section E.1 the presheaf hM/S can be considered a commutative monoid
object in the category of presheaves on Sch /S and so hM/S can be considered a
presheaf of commutative monoids. Furthermore for any Grothendieck topology
t we may also consider the t-sheaf Lt(M/S) as a commutative monoid object
in the category of sheaves on the category of Noetherian S-schemes so that
Lt(M/S) may be considered a t-sheaf of commutative monoids.

Letting +̃ : hM/S × hM/S → hM/S denote the addition map induced from
the commutative monoid object structure on M/S we recall that the addition
map +̂ : Lt(M/S) × Lt(M/S) → Lt(M/S) is the map making the following
diagram commutative

Lt(M/S)× Lt(M/S) Lt(M/S)

hM/S × hM/S hM/S

+̂

+̃

(5.1.1)

commutative. Suppose now that M is locally of finite type over S. If the
topology t is finer than the uh and coarser than the h topology then we can
describe the map +̂ in terms of Theorem 4.3.9 as follows: For a given Noetherian
S-scheme T and S-morphisms f1, f2 : T awn → M then if (f1, f2) : T awn →
M ×SM denotes the induced map such that fi = pri ◦ (f1, f2) for i = 1, 2 then
we have

(f1 + f2) = + ◦ (f1, f2) : T awn →M ×
S
M

+→M. (5.1.2)

Similarly if t is finer than the cd − uh topology and coarser than the sd-h
topology we can describe the addition using the seminormalization in stead of
the absolute weak normalization.

5.2 Auxiliary lemmas

Lemma 5.2.1. Let p : T ′ → T be a universal homeomorphism of S-schemes
with T reduced. Suppose that we have an S-morphism f ′ : T ′ → Y and an
open affine cover Ui of T such that for every i the morphism f ′|p−1(Ui) factors
through p|p−1(Ui), then the morphism f ′ factors through p.
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Proof. By assumption we have S-morphisms fi : Ui → Y such that

f ′|p−1(Ui) = fi ◦ p|p−1(Ui) (5.2.1)

for every i. Since p is an epimorphism in the category of S-schemes being
a surjective morphism to a reduced scheme, it follows easily that fi|Ui∩Uj =
fj |Ui∩Uj . Thus the fi glue to give an S-morphism f : T → Y and it is clear
that we have f ′ = f ◦ p.

Lemma 5.2.2. Let p : T ′ → T be a finite universal homeomorphism of
Noetherian S-schemes. Then for any t′ ∈ T ′ with t = p(t′) ∈ T the degree
[k(t′) : k(t)] of the induced field extension of residue fields k(t′)/k(t) is a power
of the exponential characteristic of k(t). Furthermore there exists a strictly
positive number d ∈ N such that for any t′ ∈ T ′ lying over t ∈ T the number
[k(t′) : k(t)] divides d.

Proof. The first assertion follows from Section 1.4 and Proposition 1.4.17. For
the second consider for each number i ∈ N the set Ui := {t ∈ T | dimk(t)(p∗OT ′)|t =
dimk(t) Γ(T ′t ,OT ′t ) < i}. It is well known and follows almost immediately from
Nakayama’s Lemma that these sets are open for every i ∈ N. Furthermore
by quasi-compactness of T there is some N ∈ N such that T = UN . For
a given prime number p let ep denote the largest natural number such that
pep = [k(t′) : k(t)] for some point t′ ∈ T ′ lying over t ∈ T . Note that pep ≤ N
hence the number ep is well defined and there are only finitely many primes p
such that ep > 0, denote these by p1, . . . , pm. Now set d :=

∏m
i=1 p

epi
i .

Our proof will also involve some elementary number theory. For a prime
number p let νp denote the p-adic valuation on Q, i.e. if n is a natural number
then νp(n) is the exponent of the largest power of p that divides n.

Lemma 5.2.3. Let p be a prime number and n a natural number. Suppose
that a1, . . . , ak are positive natural numbers satisfying n =

∑k
i=1 ai. Then we

have the inequality

νp(n!) ≥
k∑
i=1

νp(ai!), (5.2.2)

and if there exists an i ∈ {1, . . . , k} such that pνp(n) does not divide ai then the
inequality is strict.

Proof. Recall Legendre’s formula:

νp(n!) =

∞∑
u=1

⌊
n

pu

⌋
, (5.2.3)
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where there are of course only finitely many non-zero terms in this sum. Whence
we have

k∑
i=1

νp(ai!) =
k∑
i=1

∞∑
u=1

⌊
ai
pu

⌋
=
∞∑
u=1

k∑
i=1

⌊
ai
pu

⌋
. (5.2.4)

Since for any u ≥ 1 we have

pu

(
k∑
i=1

⌊
ai
pu

⌋)
≤

k∑
i=1

ai = n, (5.2.5)

we conclude that ⌊
n

pu

⌋
≥

k∑
i=1

⌊
ai
pu

⌋
(5.2.6)

for every u thus proving the first claim. Now suppose that there is some
i ∈ {1, . . . , k} such that pνp(n) does not divide ai then

⌊
ai

pνp(n)

⌋
< ai

pνp(n) thus
we have

k∑
i=1

⌊
ai

pνp(n)

⌋
<

k∑
i=1

ai

pνp(n)
=

n

pνp(n)
=

⌊
n

pνp(n)

⌋
(5.2.7)

and from (5.2.6) we conclude the claimed strict inequaility.

5.3 Proof of the theorem

Proof of Theorem 5.0.1. Let T be a seminormal Noetherian scheme over S and
consider the natural map

hM/S(T )→ Lt(M/S)(T ). (5.3.1)

Using the description of the t-sheafification given in Theorem 4.3.9 we recall
that this map is given by

f 7→ (f ◦ µ(−)Perf (T )).

Since µ(−)Perf (T ) is a surjective morphism to a reduced scheme it is an epi-
morphism hence the map (5.3.1) is a monomorphism thus by Lemma B.4.1
and Lemma B.2.6 it will remain a monomorphism after we tensorize with Q+.
Hence to complete the proof it is enough to show that if p : T ′ → T is a finite
universal homeomorphism and we have an S-morphism f : T ′ → (M/S) then
there exists a natural number n ∈ N\{0} such that the map n ·f : T ′ → (M/S)
factors through p. To this extent we apply Lemma 5.2.2 to obtain a natural
number d ≥ 1 such that for any t′ ∈ T ′ lying over t ∈ T the degree [k(t′) : k(t)]
of the field extension of residue fields divides d. We now claim that the map
d · f factors thorugh p. Note that the map d · f factors as

T ′ M (M/S)d M
f

/
∆
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where the map ∆ is the diagonal map and (M/S)d → M is given by the
monoid structure on M/S. Note that the morphism (M/S)d →M is invariant
under the action of Σd on (M/S)d hence it factors through Symd(M/S). By
Lemma 1.6.13 we can construct an affine cover {Uα,β}α,β of M such that
{(Uα,β/Sα)d}α,β is an open cover of (M/S)d and

{Symd(Uα,β/Sα)}α,β

is an open affine cover of Symd(M/S). Note now that (d · f)|f−1(Uα,β) coincides
with the following composition

f−1(Uα,β) Uα,β (Uα,β/Sα)d Symd(Uα,β/Sα) M.
f |f−1(Uα,β)

/
∆

Thus by Lemma 5.2.1 we can now reduce the proof to proving the following
statement:

Let C be a Noetherian seminormal A-algebra and C → C ′ an A-algebra
homomorphism such that the induced morphism of affine schemes Spec(C ′)→
Spec(C) is a finite universal homeomorphism. Suppose that there exists a
strictly positive number d ∈ N such that for any p′ ∈ Spec(C ′) lying over
p ∈ Spec(C) the number [k(p′) : k(p)] divides d. Then for any flat A-algebra
B where we let md : (B/A)⊗d → B denote the multiplication map induced
by b1 ⊗ . . . ⊗ bd 7→

∏d
i=1 bi, we have that if ϕ : B → C ′ is any A-algebra

homomorphism then the composition

Sd(B/A) (B/A)⊗d B C ′,
md ϕ

factors through C.
To prove this statement it is enough to show that the image of any generator

of the A-algebra Sd(B/A) in C ′ is contained in the image of the ring extension
C → C ′. By Theorem 1.6.7 this A-algebra is generated by the elementary
symmetric n-tensors of elements b ∈ B denoted ρdk(b) and by Remark 1.6.6
the image of ρdk(b) in C ′ is of the form

(
d
k

)
ϕ(b)k = d!

k!(d−k)!ϕ(b)k ∈ C ′. Let now
x′ ∈ Spec(C ′) lie over x in Spec(C) and suppose that the residue field k(x) has
exponential characteristic p. Then note that if νp(k!(d− k)!) < νp(d!) then the
image of d!

k!(d−k)!ϕ(b)k in k(x′) will necessarily be 0, and if the image of this
element in k(x′) is not to be zero then by Lemma 5.2.3 it follows that we must
necessarily have some natural number l such that k = νp(d)l. But then the
image of ϕ(b)k in k(x′) must by the assumption on d and Proposition 1.4.17 be
contained in k(x) thus by Proposition 4.1.23 and Theorem 4.1.4 we conclude
that the image of ρdk(b) in C ′ must in fact be contained in the subring C which
was what we needed to show.

Remark 5.3.1. The proof of Theorem 5.0.1 shows that it is enough to tensor
with any sub semiring Λ of Q+ such that every element of Exp.Char(S)
(Definition 3.2.7) is invertible in Λ.
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Chapter 6

Chow schemes and Chow
monoids

Recall from classical algebraic geometry that there is a variety due to Chow
which parametrizes effective cycles of a given dimension and degree on a
projective variety. Using a similar construction and a lot of modern theory
Suslin-Voevodsky prove in Section 4.4. of [SV00] that if i : X → PnS is a closed
embedding then the presheaf Cycleff

d ((X, i)/S, r)
UI

of relative effective cycles
of dimension r and degree d with respect to i is representable in the h-topology.
This means that there exists some scheme Cr,d such that the h-sheafification of
the corresponding representable presheaf is isomorphic to the h-sheafification
of Cycleff

d ((X, i)/S, r)
UI

. On the other hand in [Kol96, Ch. I, Sec. 3,4] one can
also find a theory of Chow schemes in mixed characteristic, which in many ways
is the same as Suslin-Voevodsky’s, yet one could argue that the construction is
a little more explicit.

In this chapter we will extract ideas from both [SV00] and [Kol96] and pro-
vide a few of our own in order to give a transparent proof of the h-representability
of effective relative cycles of fixed dimension and degree. From this we will see
that we can form a monoid object Cr((X, i)/S) which we will call the Chow
monoid of degree r cycles with respect to i. The existence of such a monoid
already appears in the literature when S is a field, indeed see for instance
[FV00]. We then prove that the sheafification of the Chow monoid with re-
spect to the h topology is isomorphic to the sheafification of the presheaf of
relative cycles on X/S with universally integral coefficients. Which we shortly
afterwards apply together with Theorem 5.0.1 to finally prove our first main
theorem Theorem 6.5.3.

The precise outline of the chapter is as follows: first we recollect some
intersection theory such as intersection numbers and the multi-degree of an
algebraic cycle on projective space. In the second section we recall the definition
and properties of relative effective Cartier divisors. Furthermore Section 6.3
is devoted to proving that the presheaf of effective relative cycles of fixed
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dimension and degree is representable in the proper/h-topology, which as
we mentioned earlier has been proved by Suslin-Voevodsky and our proof
incorporates many of their ideas, but is arguably more explicit and detailed
than the original proof. After this is done we then introduce the Chow monoid
in Section 6.4 which we then use in Section 6.5 to state and prove the first
main theorem of the thesis. The final section gives a rough overview of how
the first three sections of this chapter compare to the literature.

6.1 Effective relative cycles on multi-projective
space

Intersection numbers

Let us now very briefly recall some intersection theory. Let k be a field. For
a k-scheme X we let K(X) denote the Grothendieck group of X and for each
natural number r we denote by Kr(X) the subgroup generated by coherent
sheaves whose support has dimension at most r. For a coherent sheaf F on X
whose support has dimension at most r one has ([Kol96, VI.2, Corollary 2.3])

F ≡
∑

lengthyi F · OYi (mod Kr−1)

where yi are the generic points of the irreducible components Yi of (Supp(F ))red.

Definition 6.1.1 ([Kol96, Def.VI.2.4]). Let L be an invertible sheaf on X. We
define an endomorphism of the abelian group K(X) by the formula

c1(L) · F = F − L−1 ⊗ F.

Properties of c1(L) can be found in [Kol96, VI.2, Prop. 2.5] the most
important one for us is that c1(L) ·Kr(X) ⊂ Kr−1.

Definition 6.1.2. [Kol96, VI.2, Definition 2.6] LetX be a proper k-scheme and
F a coherent sheaf on X. Assume that m ≥ dim Supp(F ) and let L1, . . . , Lm
be invertible sheaves on X. The intersection number of L1, . . . , Lm on F is
defined by

(L1 · · ·Lm · F ) := χ(X, c1(L1) · · · c1(Lm) · F )

where χ denotes the Euler-characteristic. If L = L1 = . . . = Lm, then we write
(Lm · F ) instead of (L1 · · ·Lm · F ). If Y ⊂ X is a closed subscheme, then we
write (Lm · Y ) instead of (Lm · OY ). To avoid confusion we let (L)m denote
c1(L) · · · c1(L) and use L⊗m to denote the tensor-power. For an effective cycle
Z =

∑n
i=1 aizi of dimension at most m we set

(L1 · · ·Lm · Z) := (L1 · . . . Lm · (⊕ni=1(O⊕aiZi
)).
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Intersection numbers are locally constant in families:

Proposition 6.1.3 ([Kol96, VI.2, Proposition 2.9]). Let f : X → S be a
morphism of schemes, Li invertible sheaves on X and F a coherent sheaf on
X, flat over S, such that Supp(F ) is proper over S. Then the function

s 7→ (L1 · · ·Lm · (F ⊗OXs)

is locally constant on S.

We also have a projection formula

Proposition 6.1.4 ([Kol96, VI.2, Prop. 2.11]). Let f : Y/S → X/S be an
k-morphism of proper k-schemes, Li line bundles on X and F a coherent sheaf
on Y . Let m ≥ dim Supp(F ). Then

f∗(L1) · · · f∗(Lm) · F = L1 · · ·Lm · f∗(F).

There are other definitions of intersection numbers. To see the equivalence
of Definition 6.1.2 with the one given in [Stacks, Tag 0BEP] simply apply
[Kol96, VI.2, Theorem 2.13]. Further in the case of algebraic cycles one can
define the intersection number by using the first Chern class (see [Stacks, Tag
02SO] or [Ful98, Ch. 2, Sections 4 and 5] for the definition) and again this
coincides with 6.1.2 in the sense of the following lemma:

Lemma 6.1.5 ([Stacks, Tag 0BFI]). Let k be a field. Let X be a proper scheme
over k. Let Z ⊂ X be a closed subscheme of dimension d. Let L1, . . . ,Ld be
invertible OX-modules. Then

(L1 · · · Ld · Z) = deg(c1(L1) ∩ . . . ∩ c1(L1) ∩ [Z]d)

Algebraic cycles on multi-projective space

Definition 6.1.6. A multi-index I = (i1, . . . , is) is a sequence of nonnegative
integers. For any scheme S we denote by PIS the fiber product

PIS := Pi1S ×
S
Pi2S ×

S
. . .×

S
PisS .

We will define the multi-degree of an algebraic cycle on multi-projective
space in terms of the following example. The reader not familiar with the topic
of intersection theory may instead take the intersection numbers appearing in
the next Lemma 6.1.9 as the definition.
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Example 6.1.7 ([Ful98, Example 8.3.7]). For the multi-index I = (i1, . . . , is)
the exterior product1

A∗(Pi1k )⊗ . . .⊗A∗(Pisk )
×→ A∗(PIk)

is an isomorphism and since the Chow group Ar of Pijk is the free Z-module
generated by an r-dimensional linear subspace Lr of P

ij
k it follows that the class

of an r-cycle Z in A∗(PIk) can be written as

Z =
∑

dJ cycl(Lj1 × . . .× Ljs) in Ar(PIk) (6.1.1)

where the sum is over all tuples J = (j1, . . . , js) of non-negative integers such
that

∑s
l=1 jl = r.

Definition 6.1.8. Under the assumptions and notations of Example 6.1.7 we
shall call the integers dJ of (6.1.1) the multi-degrees of the cycle Z.

Lemma 6.1.9. Let I = (i1, . . . , is) be a multi-index and let Z be an r-
dimensional cycle on PIk. Set Lj := pr∗jOP

ij
k

(1) for j = 1, . . . , s. The multi-

degrees of Z are exactly the intersection numbers of the form

((L1)r1 · · · (Ls)rs · Z)

whenever
∑s

l=1 rl = r and rl ≤ il for all l.

Proof. Write Z in Ar(PIk) as∑
dJ cycl(Lj1 × . . .× Ljs)

where the dJ are the multi-degrees of Z.
By additivity of intersection numbers (see [Kol96, VI.2, Proposition 2.7])

and by Lemma 6.1.5 we have that

((L1)r1 · · · (Ls)rs · Z) =
∑

dJ((L1)r1 · · · (Ls)rs · cycl(Lj1 × . . .× Ljs))

By [Ful98, Example 2.5.3] we have

((L1)r1 · · · (Ls)rs ·cycl(Lj1×. . .×Ljs)) = deg((c1(OPi1k
(1))r1∩Lj1))×. . .×(c1(OPisk

(1))rs∩Ljs)))

and since (c1(OPilk
(1))rl ∩ Ljl)) = 0 whenever rl > jl and (c1(OPilk

(1))jl ∩ Ljl))
is the class of a k-point it follows that for sequences j1, . . . , js and r1, . . . , rs
that both sum to r we have

((L1)r1 · · · (Ls)rs · cycl(Lj1 × . . .× Ljs)) =

{
1 if jl = rl for all l
0 otherwise

which completes the proof.
1In this example we use Fultons notation for the Chow rings and groups.
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Example 6.1.10. For a multi-index I = (i1, . . . , is) it is well known that the
map

Pic(Pi1k )× . . .× Pic(Pisk )→ Pic(PIk)

given by

(OPi1k
(d1), . . . ,OPisk

(ds)) 7→ O(d1, . . . , ds) := pr∗1OPi1k
(d1)⊗ . . . pr∗sOPisk

(ds)

is an isomorphism of abelian groups and can for instance be deduced from the
isomorphism given by the exterior product in Example 6.1.7. Thus an effective
Cartier divisor Z on PIk is cut out by a global section of O(d1, . . . , ds) where
d1, . . . , ds are non-negative integers and one can show that the class of the
associated (

∑s
l=1 il) − 1 dimensional cycle in A(

∑s
l=1 il)−1(PIk) coincides with

class of
s∑
l=1

dl cycl(Pi1k × . . .× Pil−1

k ×Hl × Pil+1

k × . . .× Pisk ).

Hence giving an effective cycle of dimension (
∑s

l=1 il) − 1 and with multi-
degrees d1, . . . , ds is the same as giving a global section of O(d1, . . . , ds) which
again coincides with giving a multi-homogeneous polynomial of multi-degree
d1, . . . , ds i.e. a sum of the form

r∑
j=1

aj

s∏
l=1

Pj,l

where aj ∈ k and Pj,l is a homogenous polynomial of degree dl in the coordinates
of Pilk . Note that the dimension of the global sections of O(d1, . . . , ds) as a
k-vector space is equal to N ′ = N ′(I,D) :=

∏s
j=1

(ij+dj
dj

)
.

Effective relative cycles on multi-projective space

Definition 6.1.11 ([SV00, p.77]). Let S be a Noetherian scheme. For any
multi-index I = (i1, . . . , ik) let Z be an element of Cycleff (PIS/S, r). For any
point s ∈ S we denote by degs(Z) the sequence of multi-degrees (after fixing
some ordering on these) of the algebraic cycle Zs on PIks .

Proposition 6.1.12 ([SV00, Prop. 4.4.8]). Let S be a Noetherian scheme and
Z an element of Cycleff (PIS/S, r). Then the function s 7→ degs(Z) is locally
constant on S.

Proof. It is sufficient to show that if η is a generic point of S and s is a point
in the closure of η then degη(Z) = degs(Z). Since for any cycle W on PIk
and any field extension k′/k we have that the multi-degrees of W coincides
with those of W ⊗k k′ it is therefore sufficient to show that for some field
extensions L,E of kη, ks respectively the cycles ZSpec(L) and ZSpec(E) have the
same multi-degree. Let (x0, x1, R) be a fat point on S such that the image of
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x1 is {η, s}. Replacing S with Spec(R) we may assume that S is the spectrum
of a discrete valuation ring. In this case Z =

∑
ni cycl(Zi) where Zi are closed

subschemes of PIS which are flat and equidimensional over S. Noting that for
s ∈ S the pullback of the line bundle OPilS

(1) to Pilks is the line bundle OPilks
(1)

it follows from Lemma 6.1.9 and Proposition 6.1.3 that multi-degrees are locally
constant in flat families which completes the proof.

Corollary 6.1.13 ([SV00, Cor.4.4.9]). Let S be a connected Noetherian scheme.
Then for any cycle Z ∈ Cycleff (PIS/S, r) and any point s of S the multi-degree
degs(Z) is a sequence of integers which does not depend on s.

Definition 6.1.14 ([SV00, p.78]). For a Noetherian scheme S, a multi-index
I = (i1, . . . , ik) and a sequence of non-negative integers D = (d1, . . . , dn) denote
by CycleffD (PIS/S, r)UI the subset in Cycleff (PIS/S, r)UI which consists of cycles
Z such that for any point s of S one has degs(Z) = D.

The following lemma is stated without proof in the context of the cdh-
topology on p.78 of [SV00].

Lemma 6.1.15. Under the notations and assumptions of Definition 6.1.14,
the presheaf CycleffD (PIS/S, r)UI is a sub-sd-h sheaf of Cycleff (PIS/S, r)UI and
if S is connected then we have

Cycleff (PIS/S, r)UI = ∪D CycleffD (PIS/S, r)UI .

Proof. Since multi-degrees of algebraic cycles are invariant under change of base
field it is clear that CycleffD (PIS/S, r)UI is a presheaf. Further since we already
know that Cycleff (PIS/S, r)UI is a sheaf in the sd-h topology it is enough to
show that for any element Z ∈ Cycleff (PIS/S, r)UI(S) such that there exists
a sd-h-covering p : S′ → S such that cycl(p)(Z) ∈ CycleffD (PIS/S, r)UI(S′) one
has Z ∈ CycleffD (PIS/S, r)UI(S). By surjectivity of sd-h-coverings and the fact
that multi-degrees of algebraic cycles are invariant under change of base field
the first part of the lemma follows.

The last statement is a direct consequence of Corollary 6.1.13.

6.2 Relative effective Cartier divisors

Relative effective Cartier divisors

We recall the definition of a relative effective Cartier divisor. We shall follow
the definition/convention given in [Stacks] and [Fan+05] which is slightly more
general than the one given in [GD67, Section 21.15] in the sense that we do
not require the S- scheme X/S to be flat and locally of finite presentation.
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Definition 6.2.1. [Stacks, Tag 062T] Let f : X → S be a morphism of
schemes. A relative effective Cartier divisor on X/S is an effective Cartier
divisor D ⊂ X such that D → S is a flat morphism of schemes.

The following Lemma gives a nice characterisation of relative effective
Cartier divisors.

Lemma 6.2.2 ([Fan+05, Lemma 9.3.4]). Let D ⊂ X be a closed subscheme,
x ∈ D a point, and s ∈ S its image. Then the following statements are
equivalent:

(1) The subscheme D is a relative effective Cartier divisor at x (that is, in a
neighborhood of x).

(2) The schemes X and D are S-flat at x, and the fiber Ds is an effective
Cartier divisor on Xs at x.

(3) The scheme X is S-flat at x, and the subscheme D ⊂ X is cut out at x
by one element that is regular (a nonzerodivisor) on the fiber Xs.

Lemma 6.2.3 ([Stacks, Tag 0B8U]). Let f : X → S be a morphism of schemes.
If D1, D2 ⊂ X are relative effective Cartier divisor on X/S then so is D1 +D2.

It will be useful for us to keep the following result in mind before moving
on.

Lemma 6.2.4 ([Stacks, Tag 0BCN]). Let X be a Noetherian scheme and
D ⊂ X be an effective Cartier divisor. Let η ∈ D be a generic point of an
irreducible component of D. Then dim(OX,η) = 1.

Corollary 6.2.5. Suppose that X → S is an equidimensional morphism of
dimension r where S is a reduced Noetherian scheme. If D is a relative effective
Cartier divisor then cyclX(D) ∈ Cycleff (X/S, r − 1)UI . Furthermore we have

cyclX(D1 +D2) = cyclX(D1) + cyclX(D2) (6.2.1)

Proof. If D ∈ DivX/S(S) then using for instance Krull’s Hauptidealsatz one
checks easily that D → S is an equidimensional morphism of relative dimension
r− 1. The first claim now follows from Corollary 2.2.4. For the latter just note
that the set of generic points of D1 + D2 is the union of the sets of generic
points of D1 and D2 and all these points are codimension one points of X. By
additivity of length (Corollary A.1.9) we conclude the proof.

Lemma 6.2.6 ([Stacks, Tag 056Q]). Let f : X → S be a morphism of schemes.
Let D ⊂ X be a relative effective Cartier divisor on X/S. Then for every
morphism of schemes g : S′ → S the pullback (g′)−1D is an effective Cartier
divisor on X ′ = S′ ×S X where g′ : X ′ → X is the projection.
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Proposition 6.2.7. Let f : X → S be a morphism of schemes and D1, D2

be two relative effective Cartier divisors on X/S. Then for any morphisms
g : S′ → S we have the following equality

(g′)−1(D1 +D2) = (g′)−1(D1) + (g′)−1(D2).

In otherwords pullback yields a presheaf of abelian groups

DivX/S : (Sch)op → Ab .

Proof. This result essentially follows from [Vak13, Ex.24.3.H].

Lemma 6.2.8. Let f : X → S be an equidimensional morphism of dimension
r and let Z = {z} be an integral subscheme of X with z lying over a generic
point η of S such that dimZη = r − 1. Then z is a codimension 1 point of X.

Proof. From the equality

dim(Xη) = dim(OXη ,z) + dim(Zη) (6.2.2)

we see that dim(OXη ,z) = 1. Moreover since z is over the generic point η we
have

OXred,z = O(Xη)red,z (6.2.3)

proving that z is indeed a codimension one point of X.

Comparison with effective relative cycles

Lemma 6.2.9. Let S be a reduced Noetherian scheme and X → S a smooth
equidimensional morphism of dimension r and D a relative effective Cartier
divisor on X/S. Then D does not have any embedded components.

Proof. Since D is flat over S all associated points of D are mapped to associated
points of S which are necessarily generic points since S is reduced. If D has
an embedded point mapping to a generic point η ∈ S then there is also a
generic point of D lying over η. As association of points (of a ring or module)
commutes with localization it is clear that the fiber Dη must have an embedded
point. This contradicts Lemma 6.2.2 Item (2) which tells us that that Dη is an
effective Cartier divisor on the regular scheme XS hence Dη must necessarily
be Cohen-Macaulay and can thus not have any embedded components.

Corollary 6.2.10. Let S be a reduced Noetherian scheme and X → S a
smooth equidimensional morphism of dimension r. If Z ∈ Cycleff (X/S, r −
1)Q+(S) then there is at most one relative effective Cartier D on X/S such
that cyclX(D) = Z.

Proof. This follows from Lemma 6.2.9, Lemma 6.2.4 and Proposition 1.7.10.
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Proposition 6.2.11 ([SV00, Prop. 3.4.8]). Let S be a normal Noetherian
scheme and X → S a smooth equidimensional morphism of dimension r. Then
the cycl function induces a well defined isomorphism of monoids

DivX/S(S)→ Cycleff (X/S, r − 1)UI(S)

D 7→ cyclX(D)

Moreover by restricting both presheaves DivX/S and Cycleff (X/S, r − 1)UI to
the category of normal Noetherian schemes the aforementioned map gives a
natural transformation.

Proof. The fact that the cycl function induces a homomorphism of monoids

DivX/S(S)→ Cycleff (X/S, r − 1)UI(S)

is the content of Corollary 6.2.5
Let now z be any point of X lying over a generic point of S such that

the closure Z is equidimensional of relative dimension r − 1 over S. By
Lemma 6.2.8 it follows that z is a codimension 1-point. Furthermore [GD67,
Prop. 21.14.3] says (among other things) that any codimension one cycle
Z of X such that Supp(Z) does not contain any irreducible components of
any fiber f−1(s) = Xs, is locally principal and since a smooth scheme over a
normal scheme is normal ([Stacks, Tag 07TD]) it follows from Corollary 1.7.11
that Z is an effective Cartier divisor. If x ∈ Z is a point of Z then since
Xf(x) is smooth it is clear that the element which cuts out Z at the point
x is regular (nonzero divisor) on the fiber Xf(x) thus by Lemma 6.2.2.(3) it
follows that Z is a relative effective cartier divisor. This proves that the map
DivX/S → Cycleffequi(X/S, r − 1)UI = Cycleff (X/S, r − 1)UI , the last equality
following from 2.1.23, is surjective and it is injective by Corollary 6.2.10. The
final statement trivially follows from Lemma 2.3.19.

Proposition 6.2.12. Let S be a Noetherian scheme and X → S be a smooth
equidimensional morphism of dimension r. Suppose that Z ⊂ X is a closed
integral subscheme of X flat and equidimensional of dimension r − 1 over S.
Then Z is a relative effective Cartier divisor on X/S.

Proof. By Lemma 6.2.2 it is enough to prove that Zs is an effective Cartier
divisor on Xs for any point s ∈ S. Let η ∈ S be the image of the generic
point of Z. For an arbitrary point s we apply Corollary 2.1.3 to find a discrete
valuation ring R with field of fractions k(η) and a morphism Spec(R) → S
taking the closed point to s and the generic point to η. By [Stacks, Tag 036D]
(or [Gro71, Expose II, Proposition 3.1]) it follows that XR = X ×S Spec(R) is
a regular scheme. Moreover since Z is an integral scheme so is Zη and as Z
is flat over S we see that ZR = Z ×S Spec(R) has no embedded components.
Furthermore from Lemma 6.2.8 it follows that ZR is an integral codimension
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1 subscheme of XR. Thus we can apply Corollary 1.7.11 to see that ZR is a
relative effective Cartier divisor which implies that the special fiber of ZR is an
effective Cartier divisor. By Lemma 1.7.12 we conclude that Zs is an effective
Cartier divisor which is what we needed to show.

Remark 6.2.13. If the morphism X → S in Proposition 6.2.12 is also projec-
tive, then the result follows directly from [Kol96, Thm. 1.13]. In fact our proof
is very similar to the proof of the second statement of loc.cit.

Corollary 6.2.14. Let S be a Noetherian scheme and X → S be a smooth
equidimensional morphism of dimension r. For any relative cycle

Z ∈ Cycleff (X/S, r − 1)UI

there is a proper surjective morphism p : S′ → S (depending on Z) from a
reduced Noetherian scheme S′ and a relative effective Cartier divisor D on
S′×S X/S′ such that

cyclS′×S X(D) = cycl(p)(Z). (6.2.4)

Proof. For Z =
∑
nizi ∈ Cycl(X/S, r− 1) let Zi denote the closure of zi in X.

By Theorem 1.2.3 we can find a morphism p : S′ → S that is a blow up of Sred
such that the proper transforms Z̃i of Zi are flat of equidimension r − 1 over
S′ and by Lemma 2.3.14 we have

cycl(p)(Z) =
∑

ni cyclX ×S S′(Z̃i). (6.2.5)

By Proposition 6.2.12 we have that the Z̃i are relative effective Cartier divisors
on S′×S X/S′ and by Corollary 6.2.5 we have

cyclS′×S X(
∑

niZ̃i) = cycl(p)(Z). (6.2.6)

The following Lemma is trivial and well known.

Lemma 6.2.15. Suppose that t is a Grothendieck topology where the reduced-
induced subscheme structure {Xred → X} is a covering (for any scheme X).
Then for any t-sheaf F the map F(X)→ F(Xred) is an isomorphism.

Proof. Just note that we have (Xred×X Xred) = Xred and the result follows
immediately from the sheaf sequence.

The following result is implicit in [SV00, Lemma 4.4.10].
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Theorem 6.2.16. Let S be a Noetherian scheme and X → S be a smooth
equidimensional morphism of dimension r. Then we have an isomorphism of
h-sheaves on the category of Noetherian schemes

(DivX/S)h ∼= (Cycleff (X/S, r − 1)UI)h.

Proof. By Lemma 6.2.15 it is enough to show that the morphism

cycl ◦(−)red : DivX/S ◦(−)red → Cycleff (X/S, r − 1)UI ◦ (−)red (6.2.7)

is an h-local isomorphism. By Corollary 6.2.10 it is already a monomorphism
and by Corollary 6.2.14 it is h-locally an epimorphism.

Remark 6.2.17. The proof will work for any topology containing the proper
topology.

Representability of relative effective Cartier divisors in
projective space

The so called Cohomology and base change theorem states that in good cir-
cumstances, given a fibered diagram:

W X

Z Y,

ψ′

π′ π

ψ

and a coherent sheaf F on X, the natural map:

φiZ : ψ∗(Ri π∗F)→ Ri(π′)∗(ψ
′)∗(F)

is an isomorphism. We recall the precise statement whose proof can be found
in [GD63] or [Vak13].

Theorem 6.2.18 (Grothendieck). Suppose π : X → Y is proper morphism
of finite presentation, F is coherent and flat over Y , and assume that for
a given integer i and point y ∈ Y the natural base change morphism φiy :

(Ri π∗F)y ⊗OY,y k(y)→ Hi(Xy,Fy) is surjective. Then the following hold:

(1) There is an open neighborhood U of y such that for any ψ : Z → U , the
natural base change morphism

φiZ : ψ∗(Ri π∗F)→ Ri(π′)∗(ψ
′)∗(F)

is an isomorphism. In particular, φiy is an isomorphism.
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(2) Furthermore, φi−1
y is surjective (hence an isomorphism by (1)) if and

only if Ri π∗F is locally free in some neighborhood of y (or equivalently
(Ri π∗F)y is a locally free OY,y-module). This in turn implies that hi is
constant in a neighborhood of y.

This is a powerful theorem used in the construction of many moduli spaces.
A first simple consequence is the following corollary:

Corollary 6.2.19. Under the assumptions of Theorem 6.2.18, if Hi(Xy,Fy) =
0 for some y ∈ Y then there is an open neighborhood U of y such that

(1) (Ri π∗F)|U = 0 and

(2) Hi(Xy′ ,Fy′) = 0 for all y′ ∈ U .

In the case i = 1 there is some open neighborhood V of y such that (π∗F)|V
is a locally free sheaf and φ0

y′ : (π∗F)y′ ⊗OY,y′ k(y′) → Hi(Xy′ ,Fy′) is an
isomorphism with constant hi in a neighborhood of y.

Proof. By (1) of Theorem 6.2.18 it follows that (Ri π∗F)y ⊗OY,y k(y) = 0
and thus by Nakayama’s Lemma there is some neighborhood U such that
(Ri π∗F)|U = 0. By taking ψ : Z → U to be the canonical map Spec(k(y′))→ U
for any point y′ ∈ U it follows from what we have already proved that the
source of φiZ is zero and hence also the target, but by applying the target sheaf
to Spec(k(y′)) one gets the cohomology group Hi(Xy′ ,Fy′) thus proving part
(2) as well.

For the last statements note that by what we have proved in part (1) we
have that (R1 π∗F)|U is locally free (of rank 0) which by part (2) of Theorem
6.2.18 implies that φ0

y is an isomorphism and we can now apply Theorem 6.2.18
in the case of i = 0. Since φ−1

y is obviously surjective as it is a map of trivial
modules it follows from part (2) of Theorem 6.2.18 that R0 π∗F ∼= π∗F is
locally free in some neighborhood V of y and this in turn implies that h0 is
constant in a neighborhood of y. Hence the final statement also follows.

Recall from Example 6.1.10 that given a multi-index I = (i1, . . . , ik) and
K a field then the effective Cartier divisors on PIK are cut out by a multi-
homogeneous polynomial of multi-degree d1, . . . , dk for non-negative integers
d1, . . . , dk.

Definition 6.2.20. For fixed sequences of positive integers I = (i1, . . . , ik)
and D = (d1, . . . , dk) let HD,I be the subpresheaf of DivPIS/S

consisting of those
relative effective cartier divisors which are of finite presentation over S and
whose fibers have multi-degree D.

The following proposition is the multi-projective version of [Vak13, Propo-
sition 28.3.6].
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Proposition 6.2.21. For a multi-index I = (i1, . . . , is) and sequence of non-
negative integers D = (d1, . . . , ds) set N = N(I,D) := N ′−1 = N ′(I,D)−1 =∏s
j=1

(ij+dj
dj

)
− 1. Then the presheaf HD,I is represented by the scheme PNS .

Proof. It is enough to prove it in the case S = Spec(Z). Let P be the subset
of M = Γ(PIZ,O(d1, . . . , ds)) consisting of products of elements of the form
p =

∏s
j=1 Pj where Pj is a monomial of degree dj in the variables on PijZ say

(xij )0, . . . , (xij )ij . Note that P forms a basis for M as a Z-module and that
|P| = N ′. Hence we may use the p ∈ P to index the coordinates on PNZ and
we denote them by yp. Consider now the closed subscheme

X = V (
∑
p∈P

yp · p) ⊂ PNZ × PIZ.

Note that X is clearly finitely presented and the fibers are hypersurfaces in PI
cut out by multi-homogeneous polynomials of multi-degree D. One can check
flatness in several ways applying part (3) of Lemma 6.2.2 being one of them.
Thus X ∈ HD,I(PNZ ) and by Yoneda lemma we have a map hPNZ → HD,I . We
will show that this is an isomorphism.

Let S be any scheme and let X ∈ HD,I(S). Consider the exact sequence

0→ IX → OPIZ
→ OX → 0

and tensorise this with the invertible sheaf O(d1, . . . , ds) which we denote by

0→ IX(d1, . . . , ds)→ O(d1, . . . , ds)→ OX(d1, . . . , ds)→ 0.

For any point t ∈ S note that we have I(d1, . . . , ds)t = OPIkt
and by for instance

applying the Künneth formula we see that H1(PIkt ,OPIkt
) = 0. Thus we can

apply Corollary 6.2.19 and we get that (prS)∗(IX(d1, . . . , ds)) is a locally free
sheaf and we have an exact sequence

0→ (prS)∗IX(d1, . . . , ds)→ (prS)∗O(d1, . . . , ds)→ (prS)∗OX(d1, . . . , ds)→ 0.

Further h0(PIkt , I(d1, . . . , ds)t) = h0(PIkt ,OPIkt
) = 1 where we have used the

Künneth formula to compute the last cohomology group. Hence from Corollary
6.2.19 it follows that the rank of the locally free sheaf (prS)∗(IX(d1, . . . , ds))
is equal to 1 thus (prS)∗(IX(d1, . . . , ds)) is a line bundle on S. Note also that
(prS)∗O(d1, . . . , ds) is a free OS-module of rank N ′ and that on any affine open
Spec(B) of S we have that (prS)∗O(d1, . . . , ds)(Spec(B)) is isomorphic to the
B-module of multi-homogeneous polynomials of multi-degree D = (d1, . . . , ds)
with coefficients in B. Further since (prS)∗(IX(d1, . . . , ds)) is a line bundle it
follows that we can cover S by affine opens Spec(Bi) such that the image of
the map

(prS)∗(IX(d1, . . . , ds)(Spec(Bi))→ (prS)∗(O(d1, . . . , ds))(Spec(Bi))
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is generated by a multi-homogeneous polynomial Fi which cuts X out over
Spec(Bi). Furthermore since all fibers of X are hypersurfaces of multi-degee
D it follows that Fi cannot vanish at any point of Spec(Bi) and thus the
coefficients of Fi generate the unit ideal of Bi. From this we easily deduce that
we have a surjection

((prS)∗O(d1, . . . , ds))
∨ ∼= ON

′
S → (prS)∗(IX(d1, . . . , ds)

∨ := L

which means that there are N ′ global sections which we denote by fp for each
p ∈ P on the line bundle L with no common zeros. Hence by the universal
property of PNZ we get a morphism of schemes

fX : S → PNZ .

Note that on an affine open Spec(B) of S where (prS)∗O(d1, . . . , ds) trivialises
and the image of (prS)∗IX(d1, . . . , ds)→ (prS)∗O(d1, . . . , ds) is generated by a
multi-homogeneous polynomial of multi-degree D of the form F =

∑
p∈P ap · p,

the element (fp)|SpecB ∈ L(Spec(B)) corresponds to the (OS)|Spec(B) -module
map (OS)|SpecB → (OS)|SpecB given by multiplication with ap. From this
description it is clear that we have

f∗XX = X

proving surjectivity of the map hPNZ → HD,I and injectivity is rather clear.

Remark 6.2.22. Proposition 6.2.21 is a special case of [Kol96, Ex. I.1.14.2].

Corollary 6.2.23. For a multi-index I = (i1, . . . , ik) and a sequence of non-
negative integers D = (d1, . . . , dk) let PN(I,D)

S be the projective space of Proposi-
tion 6.2.21 representing the presheaf HD,I and let Hirr

D,I denote the sub-presheaf
of HD,I consisting of those X → S ∈ HD,I(S) such that for any geometric
point x : Spec(k) → S the fiber x∗X is an integral hypersurface in PIk, (i.e.
the polynomial cutting out x∗X is irreducible). There exists an open subset
UD,I ⊂ PN(I,D)

S representing Hirr
D,I .

Proof. Note that the universal hypersurface

X ⊂ PN(I,D)
S ×S PIS → PN(I,D)

S

is both proper and flat over PN(I,D)
S , hence by [GD67, (12.2.1)] the set

UD,I := {t ∈ PN(I,D)
S |Xt is geometrically integral }

is an open subset of PN(I,D)
S and it is clear that UD,I represents Hirr

D,I .
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The monoid of equi-degree hypersurfaces

Let n, r ∈ N be given. For d ≥ 0 we let Hd,n denote the presheaf HD,I

(Definition 6.2.20) where D (resp. I) is the (r + 1)-tuple where every entry
is equal to the integer d (resp. n). We will define H0,n to be the terminal
object in the category of presheaves. Similarly we shall also denote by Hirr

d,n

the presheaf Hirr
D,I . By Proposition 6.2.21 we know that the presheaf Hd,n is

representable by a scheme which we shall from now on denote by Hd,n and the
presheaf Hirr

d,n is represented by an open subscheme of Hd,n which we shall
denote by Hirr

d,n .
For any pair d1, d2 ∈ N we have a natural transformation

αd1,d2 : Hd1,n ×Hd2,n → Hd1+d2,n (6.2.8)

given by sending the pair of relative effective Cartier divisors (D1, D2) to their
sum D1 +D2. Commutativity and associativity of addition ensures that for
d1, d2, d3 ∈ N the following diagrams commute:

1.
Hd1,n ×Hd2,n Hd1+d2,n

Hd2,n ×Hd1,n Hd1+d2,n.

αd1,d2

swap

αd2,d1

(6.2.9)

2.

Hd3,n ×Hd1,n ×Hd2,n Hd3,n ×Hd1+d2,n

Hd3+d1,n ×Hd2,n Hd1+d2+d3,n.

Hd3,n×α
d1,d2

αd3,d1×Hd2,n αd3,d1+d2

αd3+d1,d2

(6.2.10)

3.

Hd1,n H0,n ×Hd1,n Hd1,n.∼= α0,d1
(6.2.11)

From Yoneda Lemma we get induced morphisms of schemes

βd1,d2 : Hd1,n×
S
Hd2,n → Hd1+d2,n. (6.2.12)

which will play a role in proving h-representability of relative cycles.
For later use note that we can apply Construction E.2.3 to get a graded

commutative monoid object in the category of schemes

Hr,n :=
∐
d≥0

Hd,n, β : Hr,n×
S
Hr,n → Hr,n. (6.2.13)

177



Observation 6.2.24. For a positive integer m we can add a relative effec-
tive Cartier divisor of multi-degree (d, d, . . . , d) with itself m times to get a
hypersurface of multi-degree (md,md, . . . ,md). This corresponds to a map of
schemes

m · β : (Hd,n/S)m → Hm·d,n (6.2.14)

which we can explicitly describe as follows: We have a commutative diagram

(Hd,n)m Hm·d,n

(hHd,n)m

h(Hd,n/S)m hHm·d,n

∼=

h(m·β)

∼=

∼=

from which we see that if we let G := ((PnS))r+1 and let Xd denote the
universal hypersurface on Hd,n×S G, then the morphism m · β : (Hd,n/S)m →
Hm·d,n corresponds to the relative effective Cartier divisor

∑m
i=1 pr

∗
iXd on

(Hd,n/S)m×S G. Suppose now first that S = Spec(Z).
If for each j = 1, . . . , r + 1 we give PnZ coordinates ((xj)0, . . . , (xj)n we

let P(d) be the subset of M = Γ(G,O(d, . . . , d)) consisting of products of
elements of the form p =

∏r+1
j=1 Pj where Pj is a monomial of degree d in the

coordinates of the j’th copy of PnZ. Note that P(d) forms a basis for M as a
Z-module and from the proof of Proposition 6.2.21 we know that the scheme
Hd,n is a projective space over Spec(Z) whose coordinates are in bijection with
P(d), hence we can denote them as {yp}p∈P(d). We then compute that the
relative effective Cartier divisor

∑m
i=1 pr

∗
iXd on (Hd,n/S)m×S G is cut out by

the following multinomial

∑
p∈P(m·d)

 ∑
(p1,...,pm)∈P(d)m∏m

i=1 pi=p

⊗mi=1pr
∗
i (ypi)

 · p ∈
Γ

(
(Hd,n/ Spec(Z))m ×G,

(
m⊗
i=1

pr∗i (OHd,n(1))

)
�OG(m · d, . . . ,m · d)

)
.

Thus the global sections of the line bundle
(⊗m

i=1 pr
∗
i (OHd,n(1))

)
corresponding

to the morphism m · β : (Hd,n/S)m → Hm·d,n are the elements of the following
set 

 ∑
(p1,...,pm)∈P(d)m∏m

i=1 pi=p

⊗mi=1pr
∗
i (ypi)



p∈P(m·d)

. (6.2.15)
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This solves the problem when working over Spec(Z). The general case is derived
from this using base change.

6.3 Proper representability of relative cycles on
projective space

The Chow homomorphism

For a given r ∈ N consider for each j = 1, . . . , r + 1 a copy of (PnZ)∨ ∼= PnZ
with coordinates y0,j , y1,j , . . . , yn,j and also consider an additional PnZ with
coordinates x0, . . . , xn. Denote by G the product

G := (PnZ)∨×
Z
× . . .×

Z
(PnZ)∨

of the r + 1-copies of (dual) projective spaces. Furthermore for each j =
1, . . . , r + 1 let

fj :=

n∑
i=0

xiyi,j ∈ Γ(PnZ ×
Spec(Z)

G, pr∗1OPnZ (1)⊗ pr∗jO(PnZ )∨(1))

and set
L := ∩(Vfj ) PnZ×Spec(Z)G./

Note that the fibers of the projection f : L → PnZ onto the first factor are
all isomorphic to (Pn−1)r+1 over the appropriate field, and thus for a k-point
x : Spec(k)→ PnZ the k-points of the fiber over x may be considered as tuples
(H1, . . . ,Hr+1) where Hj are hyperplanes in Pnk that all contain the point x,
hence the notation (PnZ)∨ used in the construction of G. The following statement
can be found without proof on p.78 of [SV00].

Lemma 6.3.1. The projection f : L → PnZ onto the first factor is a smooth
surjective morphism of relative dimension (n− 1) · (r + 1).

Proof. We first show that f is flat. Note that f is a projective morphism and
since the fibers at each point q ∈ PnZ are isomorphic to (Pn−1

kq
)r+1 it follows that∑

m

(−1)m hm(Lq, (OL)q) =
∑
m

(−1)mhm((Pn−1
kq

)r+1,O(Pn−1
kq

)r+1) = 1

where the last equality follows from for instance applying the Künneth formula
and the standard calculations of the cohomology of the structure sheaf on
projective n-space. Flatness now follows from [Vak13, Ex.24.7.A (d)]. Since the
morphism f is finitely presented and flat and the fibers (Pn−1

kq
)r+1 are smooth

varieties of dimension (n− 1) · (r + 1) the morphism f is smooth of relative
dimension (n− 1) · (r + 1).
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Now let F (−,−) be either of the sd-h-sheaves Cycl(−,−),Cycleff (−,−)UI .
Since f is flat of relative dimension (n− 1) · (r + 1) (Lemma 6.3.1) we get a
morphism (subsection 2.5)

f∗ : F (PnZ/Spec(Z), r)→ F (L/Spec(Z), (n− 1) · (r + 1) + r).

Further letting p : L→ G denote the composition

L PnZ×G G/

we have that p is a proper morphism and thus by Corollary 2.5.6 we have a
morphism

p∗F (L/Spec(Z), (r + 1)n− 1)→ F (G/ Spec(Z), (r + 1)n− 1)

Thus we have a morphism of presheaves

Chow := p∗f
∗ : Cycleff (PnZ/Spec(Z), r)UI → Cycleff (G/ Spec(Z), (r+1)n−1)UI

which we call the Chow homomorphism. From now on we fix a Noetherian
scheme S which shall be our base scheme and we shall denote G×Spec(Z) S/S
by G/S , furthermore by abuse of notation we will denote the restriction of
Chow to the category of Noetherian S-schemes by

Chow := p∗f
∗ : Cycleff (PnS/S, r)UI → Cycleff (G/S, (r + 1)n− 1)UI .

The following lemma is stated without proof in [SV00].

Lemma 6.3.2 ([SV00, Lemma 4.4.12]). For a positive integer d let D =
(d, . . . , d) denote the r+1-tuple with every entry equal to d. The homomorphism
Chow takes the subsheaf Cycleffd (PnS/S, r)UI to the subsheaf CycleffD (G/S, (r +
1)n− 1)UI .

Proof. By Lemma 2.5.7 and Proposition 2.5.5 it is enough to show that for
a morphism Spec(k) → S with k an algebraically closed field the function
Chow(Spec(k)) takes an algebraic cycle of degree d in Pnk to an algebraic
cycle of multi-degree D in (G/S)×S Spec(k). To this extent note that since
both proper push-forward and flat-pullback are linear and respect rational
equivalence it is enough to prove that some r-dimensional hyperplane2 in Pnk is
taken to an algebraic cycle of multi-degree (1, 1, . . . , 1). To this extent consider
the r-dimensional linear subspace W := V (x1, . . . , xn−r). Note that since all

2Here we are using the fact that CH(Pnk , r) = Z[W ] where W is any linear subspace of
dimension r in Pnk ([Ful98, Exampe 1.9.3])
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fibers of the morphism (f × Spec(k)) are isomorphic to (Pn−1
k )×r+1 it follows

from [Vak13, Ex.11.4.C] that the scheme

f∗(W ) := W ×
Pnk

(L×
S

Spec(k)) ∼= ∩r+1
j=1V (x0y0,j+

n∑
i=n−r+1

xiyi,j) ⊂ Prk×
k

(G/S×Spec(k))

is irreducible. Furthermore we have that

(p×
S

Spec(k))(f∗(W )) ×
Pnk

(L×
S

Spec(k)) = V
(
det(yl,j)l∈{0}∪{n−r+1≤x≤n},1≤j≤r+1

)
.

By for instance picking appropriate affine charts and using Cramer’s rule from
linear algebra we see that the induced map of function fields k(p(f∗(W )))→
k(f∗(W )) is an isomorphism.

To conclude we have that

Chow(Spec(k))(cycl(W )) = cycl
(
V
(
det(yl,j)l∈{0}∪{n−r+1≤x≤n},1≤j≤r+1

))
and since the multi-homogeneous polynomial det(yl,j)l∈{0}∪{n−r+1≤x≤n},1≤j≤r+1

has multi-degree (1, 1, . . . , 1) it follows from Example 6.1.10 that

cycl
(
V
(
det(yl,j)l∈{0}∪{n−r+1≤x≤n},1≤j≤r+1

))
has multi-degree (1, . . . , 1) completing the proof.

We denote the restriction of Chow to Cycleffd (PnS/S, r)UI by Chowd and we
restrict its target to CycleffD (G/S, (r + 1)n− 1)UI which we can do by Lemma
6.3.2.

The following well known lemma is useful in the study of Chow and Chowd.

Lemma 6.3.3. Let k be an infinite perfect field and Z a closed irreducible
subvariety of Pnk . Suppose that dimZ = r. Then for any point x ∈ Pnk \ Z we
can find r+ 1 hyperplanes of Pnk such that their intersection contains x but does
not intersect Z.

Proof. This follows from Bertini’s Theorem (see Thm. 12.4.2, Ex. 12.4.2A and
Ex. 12.4.2B (b) in [Vak13]).

Corollary 6.3.4 ([SV00, Lemma 4.4.12]). The homomorphism Chow is a
monomorphism.

Proof. One easily reduces to proving that if k is an algebraically closed field
then Chow(Spec(k)) is an injection. This follows almost immediately from
Lemma 6.3.3.

Kollár gives a little more information about the Chow homomorphism. For
a relative cycle Z =

∑
aizi ∈ Cycleff (PnS/S, r)(S) let Zi be the closure of the

points zi in PnS and set Ch(Zi) := p(f−1(Zi)) ⊂ G/S where we give this the
reduced induced subscheme structure. The following lemma is essentially the
statement of [Kol96, Ch. I, Main Lemma 3.23.1.2].
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Lemma 6.3.5. The cycle Chow(Z) ∈ Cycleff (G/S, (r + 1)n− 1)UI(S) is of
the form ∑

aiki cyclG/S(Ch(Zi))

where the numbers ki are powers of prime numbers occuring as the characteristics
of the residue fields of generic points of S. If every generic fiber of Supp(Z)→ S
is geometrically reduced, then the numbers ki are all equal to 1.

Proof. We will first prove the result in the simple case where S = Spec(k)
for an algebraically closed field k. For a given i set Z = Zi and consider the
morphism

π := p|f−1(Z) : f−1(Z)→ p(f−1(Z))red. (6.3.1)
Since this is a proper morphism it follows easily from Theorem 1.1.12 that
the set of points H ∈ p(f−1(Z))red such that the fiber π−1(H) is either empty
or 0-dimensional forms an open subset of p(f−1(Z))red. Hence there is an
open subset over which the morphism π is finite and by Corollary 6.3.4 this
open subset is necessarily dense in p(f−1(Z))red. Let now x be a closed
point in the r-dimensional scheme Z. By Bertini’s Theorem (See [Vak13,
Thm. 12.4.2]) we can find r + 1 hypersurfaces H1, . . . ,Hr+1 such that their
scheme theoretic intersection ∩r+1

j=1Hj is exactly the reduced point x. This
shows that π−1(H1, . . . ,Hr+1) = (x,H1, . . . ,Hr+1) ∈ f−1(Z). Hence by upper
semicontinuity of rank/(degree of a finite morphism) we conclude that ki = 1.

The general case can now readily be deduced from Chow being a morphism
of presheaves together with the following results: Lemma 2.3.13, Lemma 1.7.2
and Proposition 1.7.7.

Corollary 6.3.6. For a relative cycle Z ∈ Cycleff (PnS/S, r)(S) the morphism

p|f−1(supp(Z)) : f−1(supp(Z))→ p(f−1(supp(Z))) (6.3.2)

is universally injective over a dense open subset of p(f−1(supp(Z)))

Proof. The set of points U of p(f−1(supp(Z))) whose fibers are universally
injective is by [GD67, (9.2.6)] constructible. Furthermore by Lemma 6.3.5 all
the generic fibers are universally injective hence U is a constructible set of a
Noetherian scheme containing all its generic points; thus it must necessarily be
open.

Chow with respect to a closed embedding

For a closed embedding i : X → PnS over S denote by Cycleff
d ((X, i)/S, r)

UI
the presheaf that is the pullback in the category of presheaves of the following
diagram

Cycleff
d ((X, i)/S, r)

UI
Cycleffd (PnS/S, r)UI

Cycleff (X/S, r)UI Cycleff (PnS/S, r)UI
i∗
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where the lower horizontal arrow is the proper-pushforward induced by i∗. Note
that Cycleff

d ((X, i)/S, r)
UI

is both a sub-presheaf of Cycleff (X/S, r)UI and
Cycleffd (PnS/S, r)UI . The restriction of Chow (resp. Chowd) to Cycleff (X/S)

(resp. Cycleff
d ((X, i)/S, r)

UI
) will be denoted by Chow(i) (resp. Chowd(i)).

The Chow homomorphism over a field

Note that if we restrict ourselves to only working with reduced Noetherian
schemes then cycl induces a morphism Hd,n → CycleffD (G×S/S, (r+1)n−1)UI
and moreover if we restrict ourselves even further to those Noetherian schemes
which are normal then by Proposition 6.2.11 we can factorize Chowd through
Hd,n. We will now try to understand what the image of this morphism is when
we are working over Spec(k) for a reasonable field k. The following general
lemma will be useful.

Lemma 6.3.7. Consider the following commutative diagram of schemes

X Y

Z S

p2

p1 (6.3.3)

where p1 is universally open. Let U be an open subset of the underlying
topological space of Y and set W := Z \ p1(p−1

2 (U)) where we consider this as
a closed subset of the underlying topological space of Z. Then if t : S′ → S is
any morphism and we let q : t∗Z → Z be the induced projection then we have
the following equality of sets

q−1(W ) = t∗Z \ (t∗p1)((t∗p2)−1(t∗(U))) (6.3.4)

Proof. It is enough to show that we have the following equality of sets

q−1(p1(p−1
2 (U))) = (t∗p1)((t∗p2)−1(t∗(U))). (6.3.5)

The inclusion ” ⊃ ” follows easily from a diagram chase, and the inclusion
” ⊂ ” follows easily from the universal property of fiber products and a diagram
chase.

For a hypersurface H ∈ DivG/k(Spec(k)) set

Z(H) := {x ∈ Pnk : f−1({x}) ⊂ p−1(H)} (6.3.6)

We will call this the attempted Chow inverse of H. Note that we have Z(H) =
Pnk \ f(p−1(G/k \H)) and since f is a universally open morphism the set Z(H)
is necessarily a closed subset of Pnk . The following proposition is essentially
[Kol96, Ch. I, Prop. 3.24.4]
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Proposition 6.3.8. For a hypersurface H ∈ DivG/k(Spec(k)) we have

1. dimZ(H) ≤ r.

2. If H is irreducible and dimZ(H) = r then the closed set Z(H) is neces-
sarily irreducible. Furthermore if the field k is also perfect then there is
some d ∈ N such that Chow(Z(H)) = Chowd(Z(H)) = H.

Proof. For (1): If dimZ(H) ≥ r+1 then the same is true for dimZ(H)×Spec(k) Spec(k)

where k denotes an algebraic closure of k. By Lemma 6.3.7 it is thus enough
to show that this cannot happen when k = k. Indeed since every codimension
r + 1 linear space meets a variety of dimension ≥ r + 1 in Pnk it then follows
that p(f−1(Z(H))) ⊂ H contains every closed point of G/k and must thus
coincide with G/k which is absurd.

For (2): Let V ⊂ Z(H) be an irreducible component of dimension r and
assume first that the field k is infinite and perfect. For any point x /∈ V we
apply Lemma 6.3.3 to find r + 1 hyperplanes of Pnk such that their intersection
contains x but does not intersect V . Thus x /∈ Z(p(f−1(V ))) = Z(H). For the
general case note that if Z is a variety of dimension r of finite type over a field k
then Z ′ = Spec k(t)×Spec(k) Z remains irreducible of dimension r and moreover
the same is true for the base change Z ′′ = Spec(k(t)Perf ×Spec(k(t)) Z

′ =

Spec(k(t)Perf )×Spec(k) Z, hence we can apply Lemma 6.3.7 to reduce to the
case of an infinite perfect field which we have already solved.

The final statement of (2) follows from Lemma 6.3.5.

Corollary 6.3.9 ([Kol96, Cor. I.3.24.5]). Let i : X → PnS be a closed embed-
ding. Then for a morphism Spec(k) → S with k a perfect field we have that
Chowd(i)(Spec(k)) gives a bijection between r dimensional cycles of degree d
on X ×S Spec(k) ⊂ Pnk and the set{

H ∈ Hd,n(Spec(k)) : dimZ(Hj) = r, Z(Hj) ⊂ X ×S Spec(k)
for every irreducible component Hj of H

}
Proof. Indeed if cyclG/k(H) =

∑
j ajHj where we have dimZ(Hj) = r with

Z(Hj) ⊂ X ×S Spec(k) for all j then set

Z :=
∑

aj cyclX ×S Spec(k)(Z(Hj)red)

Then by Proposition 6.3.8 we have Chow(Z) = cyclG/k(H) and as the cycle Z
must have some degree and its image has degree d it is clear that Z must have
degree d.

Construction of the Chow scheme of degree d cycles

Notation 6.3.10. As in Observation 6.2.24 we let Xd denote the univer-
sal hypersurface on Hd,n(Hd,n) and for a point H ∈ Hd,n let H∗(Xd) ∈
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Hd,n(Spec(k(H)) denote the pullback of Xd along the map Spec(k(H))→ Hd,n.
Furthermore we let hd : Hn,r → S denote the structural map to S and for
a closed embedding i : X → PnS we let H∗h∗dX denote the fiber product
Spec(K(H))×Hd,n h

∗
dX which is a closed subscheme of Pnk(H).

Fix a closed embedding i : X → PnS and set as a preliminary step

Cr,d((X, i)/S) :=

{
H ∈ Hd,n : dimZ(Hj) = d and Z(Hj) ⊂ H∗h∗dX for every
irreducible component Hj of H∗(Xd)

}
where we recall that Z(−) denotes the attempted Chow inverse of a hypersurface.
When X = PnS we shall instead simply write Cr,d(PnS/S).

We want to show that Cr,d((X, i)/S) is a closed subset of Hd,n.

Remark 6.3.11. We find it hard to understand the reasons for Cr,d(PnS/S)
being closed given in [Kol96, Ch. I, Claim 3.25.1]. In loc.cit. one lets h : Hd,n →
S denote the morphism to S and h∗f : h∗L → h∗Pn and h∗p : h∗L → h∗G
denote the induced morphisms from the base change from S to Hd,n. Setting

Z(Xd) := {x ∈ h∗Pn | (h∗f−1(x) ⊂ (h∗p)−1(Xd)}

and letting π : Z(Xd) → h∗Pn → Hd,n denote the induced morphism it is
then claimed that by definition H ∈ Cr,d(PnS/S) if and only if every irreducible
component of the fiber π−1(H) has dimension d. The following Example due
to J. van Zelm shows that this claim is not correct and perhaps we have
misunderstood what was meant in loc.cit.

Example 6.3.12. Let us consider the case S = Spec(k) for an algebraically
closed field k and n = 2 and r = 1 so G = (((P2

k)
∨)/k)2. Consider the sets of

pairs of hyperplanes

F1 = {(H1, H2) ∈ G | ∃t ∈ k such that (t : 1− t : 0) ∈ H1 ∩H2 ⊂ P2
k}

and

F2 = {(H1, H2) ∈ G | ∃t ∈ k such that (t : 1−t : 0) ∈ H1 and (t : 0 : 1−t) ∈ H2}

Both F1 and F2 define irreducible degree (1, 1) hypersurfaces in G and their
union F is a degree (2, 2) hypersurface in G. Now by construction we have

Z(F1) = {(t : 1− t : 0) | t ∈ k} ⊂ P2
k (6.3.7)

Z(F2) = {(1 : 0 : 0)} ⊂ P2
k (6.3.8)

Z(F ) = Z(F1 ∪ F2) = {(t : 1− t : 0) | t ∈ k} = Z(F1). (6.3.9)

This last equality shows that the fiber of π at the point of H2,2 corresponding
to F is exactly the set Z(F ) which is irreducible of dimension 1, while Z(F2)
is just a point giving the contradiction.
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Furthermore in the proof of this same claim it is claimed that upper-
semicontinuity of fiber dimension tells us that the set where all irreducible
components of the fibers are greater than a certain dimension is a closed subset.
We do not know of any such theorem unless the morphism is both proper and
flat in which case one can apply [GD67, (12.2.1)].

We will prove that Cr,d((X, i)/S) is closed in several steps. The main ideas
are extracted from [SV00, Sec. 4.4].

Notation 6.3.13. Let X irr
d ⊂ Hirr

d,n ×S G denote the universal irreducible
hypersurface and let hirrd : Hirr

d,n → S denote its structural map to S. We
now set

Z(X irr
d ) := {x ∈ hirrd

∗PnS | (hirrd
∗
f)−1(x) ⊂ (hirrd

∗
p)−1(X irr

d )} (6.3.10)

and

Cirrr,d((X, i)/S) := {H ∈ Hirr
d,n : dimZ(H∗X irr

d ) = r, Z(H∗X irr
d ) ⊂ H∗hirrd

∗
X}.

If X = PnS we shall instead denote this set by Cirrr,d (PnS/S).

Lemma 6.3.14. The set Cirrr,d (PnS/S) is a closed subset of Hirr
d,n.

Proof. Since the fibers of X irr
d → Hirr

d,n are all integral schemes it follows
from Proposition 6.3.8 and Lemma 6.3.7 that if we let π : Z(X irr

d ) ⊂ hirrd
∗PnS →

Hirr
d,n be the canonical map then we have

Cirrr,d (PnS/S) = {H ∈ Hirr
d,n : dimπ−1(H) ≥ r} (6.3.11)

which by Theorem 1.1.12 is a closed subset.

Corollary 6.3.15. The set Cirrr,d((X, i)/S) is a closed subset of Cirrr,d (PnS/S)

hence also a closed subset of Hirr
d,n.

Proof. In the notation of the proof of Lemma 6.3.14 we recall that every fiber
of the map

π : Z(X irr
d ) ⊂ hirrd

∗PnS → Hirr
d,n

is irreducible and a fiber has dimension r if and only if it maps to a point of
Cirrr,d (PnS/S) hence H ∈ Cirrr,d((X, i)/S) if and only if the preimage of H under
the morphism

Z(X irr
d ) ∩ hirrd

∗
X → Z(X irr

d )
π→ Hirr

d,n

is an r-dimensional scheme. By Theorem 1.1.12 this is a closed subset.

Lemma 6.3.16. For H ∈ Hd,n let H ′ : Spec(L) → Hd,n denote the induced
morphism from any field extension L/k(H). The following are equivalent.
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1. dimZ(Hj) = r and Z(Hj) ⊂ X ×S Spec k(H) for every irreducible com-
ponent Hj of H∗Xd.

2. dimZ(H ′i) = r and Z(H ′i) ⊂ X ×S Spec(L) for every irreducible compo-
nent of H ′i of H

′∗Xd.

Proof. Using Lemma 6.3.7 this is essentially just a simple diagram chase.

Lemma 6.3.17. The set Cr,d((X, i)/S) is a constructible subset of Hd,n.

Proof. By [Stacks, Tag 054J] it is enough to show that Cr,d((X, i)/S) is the
image of a morphism f : Y → Hd,n of finite presentation from a Noetherian
scheme Y . Let d1, . . . , dk be natural numbers such that d = d1 + . . . + dk.
As we saw in Section 6.2 addition of relative effective Cartier divisors give us
morphisms

Hirr
d1,n × . . .×Hirr

dk,n → Hd,n

Hence we get a morphism

qd1,...,dk : Cirrr,d1((X, i)/S)×S . . .×S Cirrr,dk((X, i)/S)→ Hd,n (6.3.12)

One easily checks that this morphism corresponds to the following hypersurface:

q∗d1,...,dk
Xd =

k∑
v=1

pr∗v(j
∗
vXdi), (6.3.13)

where jv : Cirrr,dv((X, i)/S)→ Hdv ,n is the obvious locally closed embedding
and prv :

∏k
v=1C

irr
r,dv((X, i)/S)→ Cirrr,dv((X, i)/S) denotes the projection.

From this we see that if t : Spec(L)→
∏k
v=1C

irr
r,dv((X, i)/S) is any morphism

where L is a field then

t∗q∗d1,...,dk
Xd =

k∑
v=1

t∗pr∗v(j
∗
vXdv) (6.3.14)

where the hypersurfaces t∗pr∗v(j∗vXdv) are irreducible and satisfy

dimZ(t∗pr∗v(j
∗
vXdv)) = r

for all v. Hence by Lemma 6.3.16 it follows that qd1,...,dk ◦ t must factor through
Cr,d((X, i)/S).

Suppose now that H ∈ Cr,d((X, i)/S) and for an algebraic closure k(H)

of the residue field k(H) let H : Spec(k(H))→ Hd,n be the induced map. By
Lemma 6.3.16 we have that if cycl(H

∗
Xd) =

∑l
u=1mu cycl(Hu) where Hu are

the irreducible components of H∗Xd then we have dimZ(Hu) = r for every
u and each of these have some multidegree of the form du = (du, . . . , du) by
Proposition 6.3.8. Moreover we have

H
∗
Xd =

∑
muHu

187

https://stacks.math.columbia.edu/tag/054J


where the sum is the sum of effective Cartier divisors. One now readily checks
that H is in the image of the map∏

u

(Cirrr,du((X, i)/S))mu → Hd,n

thus proving that Cr,d((X, i)/S) is exactly the set theoretic image of the map

d∐
k=1

∐
(d1,...,dk)∑k
v=1 dv=d

k∏
j=1

Cirrr,dj ((X, i)/S)→ Hd,n

which is constructible.

For later use we restate here the more precise statement that we just proved.

Observation 6.3.18. The set Cr,d((X, i)/S) ⊂ Hd,n is exactly the set theoretic
image of the map

d∐
k=1

∐
(d1,...,dk)∑k
v=1 dv=d

k∏
j=1

Cirrr,dj ((X, i)/S)→ Hd,n

The following technical, but highly important Lemma was inspired by the
proof of [SV00, Lemma 4.4.4].

Lemma 6.3.19. Let S be a Noetherian scheme and X → S be a morphism
of finite type. Let T be an integral Noetherian scheme over S and let η ∈ T
denote the generic point of T . Suppose that E/kη is a field extension and
Z ∈ Cycl(XE , r). Then there is a proper h-covering W → T from an integral
scheme W with field of functions k(W ) ⊂ E such that k(W ) is a finitely
generated field extension of kη and a relative cycle ZW ∈ Cycl(X ×SW/W, r)UI
such that the pullback of ZW to Spec(E) is the cycle Z. If Z ∈ Cycleff (XE , r)
then the relative cycle ZW can be taken to be in Cycleff (X ×SW/W, r)UI .

Proof. Suppose that
Z =

∑
aizi ∈ Cycl(XE , r).

Let Zi denote the closure of zi in XE . By [GD67, Prop. (4.8.13)] there is a
finitely generated field extension ki of kη and integral subscheme Z ′i of Xki

such that (Z ′i)×Spec(ki) Spec(E) = Zi for each i. Let L be the composite of the
field extensions ki. For each i set (Z ′′i ) := (Z ′i)×Spec(ki) Spec(L). Note that
since we have a surjection Zi → (Zi)

′′ from an integral scheme it follows that
(Zi)

′′ is irreducible and since the base change of (Z ′′i ) to Spec(E) is Zi which
is reduced it follows easily that (Zi)

′′ must also be reduced hence (Zi)
′′ is an

integral scheme. Set Z ′′ :=
∑
aiz
′′
i ∈ Cycl(XL, r) where z′′i are the generic
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points of Z ′′i and note that the flat pullback of Z ′′ to XE is exactly the cycle Z.
Let t1, . . . , tn be generators of the field extension L/kη and let Spec(A)→ T
be any open affine subset of T . Consider the composition

ϕ : A[T1, . . . , Tn]→ kη[T1, . . . , Tn]→ L

where the last map is given by by Ti 7→ ti. Let p denote the kernel of ϕ which
clearly is a prime ideal. Then V := Spec(A[T1, . . . , Tn]/p) is an integral scheme
with function field L and V is a locally closed subscheme of AnT thus V is a
locally closed subscheme of PnT and we let V denote the scheme theoretic image
of V in PnT . Then V → T is a proper surjective morphism and k(V ) = L hence
we can consider the morphism XL → V ×T X. Let wi denote the images of
z′′i in V ×T X and Wi the closure of the points wi (with the induced reduced
subscheme structure). By Theorem 1.2.3 there is a blowup W → V such that
the strict transforms W̃i →W are flat. Note thatW → V → T is an h-covering
of T . Furthermore by Lemma 2.3.4 it follows that W̃i → W are universally
equidimensional of dimension r and it is clear that the cycle

ZW :=
∑

ai cycl(W̃i)

is contained in Cycl(W ×S X/W, r)UI . Furthermore by Lemma 2.3.19 it is
clear that the pullback of ZW to Spec(E) is the cycle Z which completes the
proof.

Proposition 6.3.20. The set Cr,d((X, i)/S) is a closed subset of Hd,n.

Proof. Since we have already proved that this is a constructible subset of Hd,n

(Lemma 6.3.17) it is enough to show that this subset is stable under specializa-
tion ([Stacks, Tag 0542]). To this extent suppose H ∈ Cr,d((X, i)/S) and H ′ ∈
{H} is a specialization of H. By Lemma 6.3.16 and Corollary 6.3.9 we can find
a cycle Z ∈ Cycleff

d ((X, i)/S, r)
UI

(Spec(k(H)Perf )) such that Chowd(i)(Z) =
cycl((Xd)k(H)Perf ), where (Xd)k(H)Perf denotes the base change of Xd along
Spec(k(H)Perf ) → Spec(k(H)) → Hd,n. Now letting T = {H} ⊂ Hd,n be
the closure of H with the reduced induced subscheme structure we have by
Lemma 6.3.19 a proper surjective morphism p : W → T and a relative effective
cycle ZW ∈ Cycleff (X ×SW, r) where k(H)Perf → T has a lifting to W such
that the pullback of ZW to k(H)Perf is the cycle Z, hence since W is integral
thus connected we must have ZW ∈ Cycleff

d ((X, i)/S, r)
UI

(W ). Furthermore
it is also easy to see that we must have Chowd(i)(ZW ) = cycl(Xd×SW ) and
since every point of T has a lifting to W we then conclude by Lemma 6.3.16
that every point of T is contained in Cr,d((X, i)/S) completing the proof.

Endow the closed subset Cr,d((X, i)/S) with the reduced induced subscheme
structure. We shall here call this scheme the Chow scheme of degree d relative
cycles of dimension r with respect to i. The reason for this name will become
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more apparent in the next sub-section, although the reader should be warned
that there may be other schemes in the literature also referred to as "Chow
schemes" which might not be isomorphic to the one provided here. We will get
back to this issue later on.

Representability in the proper topology

Recall that for a Noetherian base scheme S and closed embedding i : X → PnS
we have that if t : T → S is a morphism from a reduced scheme such that
the cycle cyclG×S T/T (t∗Xd) is in the image of Chowd(i) then the morphism
t must necessarily factor through Cr,d((X, i)/S). Ideally we would want the
morphism Chowd(i) to factor through the representable presheaf hCr,d((X,i)/S),
however as a cycle of the form Chowd(i)(Z) is not necessarily induced by
a relative effective Cartier divisor, this is likely too much to hope for. On
the other hand Corollary 6.2.14 tells us that given any relative cycle Z ∈
Cycleff

d ((X, i)/S, r)
UI

(T ) there is a proper surjective morphism p : T ′ → T
such that Chowd(i)(cycl(p)(Z)) corresponds to a relative effective Cartier
divisor on G×S T ′/T ′. This gives rise to the idea that if we sheafify our
presheaves with respect to a suitable Grothendieck topology then our desired
factorization becomes possible. We now make this precise:

Lemma 6.3.21. Let C be a category and t a Grothendieck topology on C finer
than a Grothendieck topology t1 where the coverings of t1 are either empty or
singletons (i.e. they are of the form {X ′ → X}). Let ψ : F → G be a map
of presheaves and H ⊂ G be a subpresheaf. Suppose that for any X ∈ C and
f ∈ F (X) there is some t-covering p : X ′ → X such that

ψ(X ′)(p∗(f)) = p∗(ψ(X)(f)) ∈ H(X ′),

Then the morphism ψt : Ft → Gt factors through the monomorphism Ht → Gt

thus inducing a map
φ : F → Ht

(or equivalently Ft → Ht) such that if f ∈ F (X) is such that ψ(X)(f) ∈ H(X)
then φ(X)(f) = ψ(X)(f)a.

Proof. It is enough to prove the lemma in the case t = t1. For f ∈ F (X) let
p : X ′ → X be some t-covering such that g′ = p∗(ψ(X)(f)) ∈ H(X ′). It is
clear that pr∗1(g′) = pr∗2(g′) ∈ H(X ′×X X ′) thus there is a unique element
φp(f) ∈ Ht(X) such that

p∗(φp(f)) = (p∗(ψ(X)(f)))a.

It is easy to see that if q : X ′′ → X is any other t-covering then we must
necessarily have φp(f) = φq(f); thus for f ∈ F (X) we define φ(f) ∈ Ht(X)
to be this common element. We need to show that this gives a natural
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transformation. For a morphism g : Y → X and element f ∈ F (X) pick
some t-covering p : X ′ → X such that p∗(ψ(X)(f)) ∈ H(X ′). Note that
the pullback of g along p induces a t-covering {prY : X ′×X Y → Y } and
pr∗Y (ψ(Y )(g∗(f))) ∈ H(X ′×X Y ). A diagram chase now shows that g∗(φ(f))
satisfies the defining property of φ(g∗(f)).

Definition 6.3.22. The proper topology on the category of Noetherian schemes
over S is the topology where coverings are either empty or singletons of the
form {p : X ′ → X} with p a proper surjective morphism. For a presheaf F
on the category of Noetherian S-schemes we denote the sheafification of F
with respect to the proper topology by Fprop, if F is a representable presheaf
F = hX/S we shall instead denote the sheafification by Lprop(X/S).

Corollary 6.3.23. The morphism

Chowd(i) : Cycleff
d ((X, i)/S, r)

UI
→ CycleffD (G× S/S, (r + 1)n− 1)UI

induces a morphism of presheaves on the category of Noetherian S-schemes

Φd : Cycleff
d ((X, i)/S, r)

UI
→ Lprop(Cr,d((X, i)/S))

satisfying the following properties:

1. If T is a normal Noetherian scheme over S then the image of Φd(T ) is con-
tained in the image of the canonical map hCr,d((X,i)/S)(T )→ Lprop(Cr,d((X, i)/S))(T ).

2. For any Noetherian scheme T over S and relative cycle Z ∈ Cycleff
d ((X, i)/S, r)

UI
(T )

there is a proper surjective morphism p : T ′ → T such that Φd(T
′)(cycl(p)(Z))

is in the image of the map hCr,d((X,i)/S)(T
′)→ Lprop(Cr,d((X, i)/S))(T ′).

3. If Spec(k)→ S is a morphism from a perfect field k then Φd(Spec(k)) is
a bijection of sets.

Moreover all these statements remain true after replacing the proper topology
with the h-topology.

Proof. First apply Lemma 6.3.21 with ψ being the map

Chowd(i)◦(−)red : Cycleff
d ((X, i)/S, r)

UI
◦(−)red → CycleffD (G×S/S, (r+1)n−1)UI◦(−)red

and H the subpresheaf hCr,d((X,i)/S) ◦ (−)red. Then from this and Lemma 6.2.15
we get the morphism

Φd : Cycleff
d ((X, i)/S, r)

UI
→ Cr,d((X, i)/S)prop.

The claimed properties of this map follow from Proposition 6.2.11, Corol-
lary 6.2.14, Corollary 6.3.9 and Theorem 4.3.9.
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Lemma 6.3.24. Let X be a scheme of finite type over a Noetherian scheme S
and T be any Noetherian scheme over S. Suppose that for each generic point
τ ∈ T we are given a field extension k(τ) ⊂ Eτ and Zτ ∈ Cycleff (XEτ , r).
Then there is a proper surjective morphism p : T ′ → T and a relative cycle
ZT ′ ∈ Cycleff (X/S, r)UI(T

′) such that the following statements hold true:

1. The connected components of T ′ coincide with its irreducible components
and p induces a bijection between generic points of T ′ and generic points
of T .

2. For any generic point η of T ′ lying over τ ∈ T we have a tower of fields

k(τ) = k(p(η)) ⊂ k(η) ⊂ Eτ

where k(η) is a finitely generated field extension of k(τ). In particular
for each τ the morphism Spec(Eτ )→ T factors through T ′ via a map

eτ : Spec(Eτ )→ T ′

3. We have that e∗τ (ZT ′) = Zτ for every generic point τ of T .

Proof. Apply Lemma 6.3.19 to each of the irreducible components of T to
obtain proper morphisms pi : Ti

′ → T and cycles ZTi′ pulling back to Zτi .
Set T ′ :=

∐
Ti
′ and let p be the map induced by the pi. It is clear that p

satisfies the desired properties and since Cycleff (X/S, r)UI is a sheaf in the
sd-h-topology it follows that the ZTi′ glue to give a relative cycle ZT ′ satisfying
the desired properties.

Theorem 6.3.25 (See also [SV00, Thm. 4.4.11], [SV00, Cor. 4.4.13]). Let
S be a Noetherian scheme and i : X → PnS a closed embedding. Then the
presheaf of relative cycles of degree d and dimension r Cycleff

d ((X, i)/S, r)
UI

is
representable in the proper topology by the scheme Cr,d((X, i)/S).

Proof. It is enough to prove that the morphism

Φd : Cycleff
d ((X, i)/S, r)

UI
→ Lprop(Cr,d((X, i)/S))

from Corollary 6.3.23 is proper-locally an isomorphism. Let T be any S-scheme
with generic points τ1, . . . , τl. Setting Lj = k(τj)

Perf for j = 1, . . . , l we get
induces canonical maps Spec(Lj)→ T for j = 1, . . . , l. Consider the following
commutative diagram

Cycleff
d ((X, i)/S, r)

UI
(T ) Lprop(Cr,d((X, i)/S))(T )

∏l
j=1 Cycleff

d ((X, i)/S, r)
UI

(Spec(Lj))
∏l
j=1 Lprop(Cr,d((X,u)/S))(Spec(Lj))

Φd(T )
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where the lower horizontal map is the map
∏l
j=1 Φd(Spec(Lj)). The leftmost

vertical map is clearly injective and the lower horizontal map is a bijection
by Corollary 6.3.23. Hence the upper horizontal map is injective proving
that Φd is a local monomorphism with respect to the proper topology. To
see that it is also a local epimorphism with respect to the proper topol-
ogy let g ∈ Lprop(Cr,d((X, i)/S)) be any element and let g′ be its image in
Lprop(Cr,d((X,u)/S))(Spec(Lj)). Since the lower horizontal map is a bijection
there is a unique element (Z)lj=1 ∈

∏l
j=1 Cycleff

r ((X, i)/S, r)UI(Spec(Lj)) map-
ping to g′. By Lemma 6.3.24 we can find a proper surjective morphism p : T ′ →
T such that the maps Spec(Lj)→ T all factor through p and a relative cycle
ZT ′ ∈ Cycleff (X/S, r)(T ′) whose image in

∏l
j=1 Cycleff

d ((X, i)/S, r)
UI

(Spec(Lj))
is Z (note that the leftmost vertical arrow in our diagram factors through
Cycleff (X/S, r)(T ′). We now claim that Φd(T

′)(ZT ′) = p∗(g). To prove this
it is enough to show that the map

Lprop(Cr,d((X, i)/S))(T ′)→
l∏

j=1

Lprop(Cr,d((X, i)/S))(Spec(Lj))

is an injection. Using the description of

Lprop(Cr,d((X, i)/S))(T ′)

given in Theorem 4.3.9 we have that if g1, g2 : (T ′)awn → Cr,d((X, i)/S) are
any two maps with the same image in

∏l
j=1 Lprop(Cr,d((X, i)/S))(Spec(Lj))

then we easily see that all generic points of (T ′)awn are necessarily contained in
their equalizer which is a closed subscheme of (T ′)awn. Since (T ′)awn is reduced
it follows that g1 = g2. This completes the proof.

Remark 6.3.26. A scheme such as Cr,d((X, i)/S) that represents Cycleff
d ((X, i)/S, r)

UI
in the proper topology is not unique up to isomorphism (see Corollary 4.3.11).
However by Corollary 4.3.12 we know that the underlying topological spaces of
any two schemes proper/h-representing Cycleff

d ((X, i)/S, r)
UI

must necessarily
be homeomorphic.

As an immediate consequence of Theorem 6.3.25 we get an alternative proof
of the following theorem:

Corollary 6.3.27 ([Kol96, Ch. I, Thm. 3.21]). Let S be a Noetherian scheme
over a field of characeteristic zero. Then after restricting ourselves to the cate-
gory of seminormal Noetherian schemes over S the presheaf Cycleff

d ((X, i)/S, r)
UI

is representable by the semi-normalization of Cr,d((X, i)/S).

Proof. When S is of characteristic zero the sd-h and h-topology on Sch /S agree,
hence by Lemma 6.1.15 the presheaf Cycleff

d ((X, i)/S, r)
UI

is a sheaf in the
h-topology. Furthermore in characteristic zero we have that (−)sn and (−)awn

coincide and the desired result then follows from Theorem 6.3.25, Theorem 4.3.9
and Theorem 4.2.12.
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Applications to rational equivalence of algebraic cycles

We can extract information from our last few proofs to reinterpret rational
equivalence in terms of rational curves on the Chow scheme. We will need the
following lemma:

Lemma 6.3.28. Let f : X → Y be a morphism of proper non-singular curves
over a perfect field k. If the induced extension of function fields k(Y ) ⊂ k(X)
is purely inseparable, then there is a unique isomorphism Y = X such that f is
the n-fold Frobenius of X/k.

Proof. This is readily deduced from [Stacks, Tag 0CCZ].

Recall that if i : X → PnS is a closed embedding then we have from Corol-
lary 6.3.23 a morphism Φd : Cycleff

d ((X, i)/S, r)
UI
→ Lprop(Cr,d((X, i)/S))

which is a bijection on k-points of S whenever k is a perfect field. The following
proposition is a generalization of [Sam56, Thm.3].

Proposition 6.3.29. Let k be a perfect field and i : X → Pnk a closed embedding.
Then a cycle Z ∈ Cycl(X, r) is rationally equivalent to zero if and only if there
is a positive integer d and a rational curve f : P1

k → Cr,d((X, i)/ Spec(k)) on
Cr,d((X, i)/Spec(k)) such that

Z = c(f(0))− c(f(∞)),

where c(f(y)) denotes the inverse image of the restriction of f to the k-point
y ∈ P1

k with respect to the map Φd(Spec(k)).

Proof. For necessity note that if Z is rationally equivalent to zero then by
definition there is a relative r-cycle W ∈ Cycleff

d ((X, i)/ Spec(k), r)
UI

(P1
k) such

that
Z = cycl(t0)(W)− cycl(t∞)(W).

By Corollary 4.3.14 it follows that there is a finite purely inseparable field
extension L of k(t) such that if T denotes the normalization of P1

k in L we have
a morphism f : T → Cr,d((X, i)/ Spec(k)) whose class represents Φd(W). By
Lemma 6.3.28 it follows easily that f is a rational curve on Cr,d((X, i)/ Spec(k))
such that c(f(0)) = cycl(t0)(W) and c(f(∞)) = cycl(t∞)(W) which proves
necessity.

For sufficiency suppose that f : P1
k → Cr,d((X, i)/Spec(k)) is a rational

curve on Cr,d((X, i)/ Spec(k)). Let t : Spec(k(t)Perf ) → Spec(k(t)) → P1
k be

the obvious morphism and letW ′ ∈ Cycleff
d ((X, i)/ Spec(k), r)

UI
(Spec(k(t)Perf ))

be the cycle that Φd maps to f ◦t. By Lemma 6.3.19 we have a surjective proper
morphism π : T → P1

k from an integral scheme T with k(t) ⊂ k(T ) ⊂ k(t)Perf

and a relative cycle W ∈ Cycleff
d ((X, i)/Spec(k), r)

UI
(T ) such that W pulls

back to W ′. Furthermore the field extension k(T )/k(t) is finitely generated
thus (using Nullstellensatz) it is finite and purely inseparable. Furthermore
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after possibly normalizing T we can assume that it is a non-singular proper
curve and moreover by Lemma 6.3.28 we may even assume that it is the pro-
jective line over k. It is clear that Φd(T )(W) coincides with the image of f ◦ π
in Lprop(X/ Spec(k))(P1

k) and moreover the cycle cycl(t0)(W) corresponds to
f ◦π ◦ t0 = f ◦ t0 and similarly cycl(t∞)(W) corresponds to f ◦ t∞ which proves
sufficiency.

Remark 6.3.30. By essentially replacing the projective line with any smooth
algebraic curve in Definition 2.5.16 we get the definition of algebraic equivalence.
One can then prove an analogue of Proposition 6.3.29 for the notion of algebraic
equivalence by considering all the connected components of the Chow scheme
and then requiring the cycles involved to correspond to points lying in the same
connected component of the Chow scheme.

6.4 The Chow monoid

The Chow monoid

Recall from Section 6.2 that for a Noetherian scheme S and a natural number
r, addition of the equi-multi-degree hypersurfaces on G = ((PnS)∨)r+1 gives us
maps

βd1,d2 : Hd1,n×
S
Hd2,n → Hd1+d2,n

giving rise to the commutative graded monoid object

Hr,n :=
∐
d≥0

Hd,n, β : Hr,n×
S
Hr,n → Hr,n.

Now for a given closed embedding i : X → PnS and natural numbers d1, d2 ∈ N if
we restrict the map βd1,d2 to the closed subscheme Cr,d1((X, i)/S)×S Cr,d2((X,S)/S)
then by Observation 6.3.18 this map must necessarily factor through Cr,(d1+d2)((X, i)/S).
Hence we have maps

ρd1,d2 : Cr,d1((X, i)/S)×
S
Cr,d2((X,S)/S)→ Cr,(d1+d2)((X, i)/S) (6.4.1)

giving rise to the commutative graded monoid object (Construction E.2.3).

Cr((X, i)/S) :=
∐
d≥0

Cr,d((X, i)/S), ρ : Cr((X, i)/S)×
S
Cr((X, i)/S)→ Cr((X, i)/S)

(6.4.2)
Moreover since each graded piece of the scheme Cr((X, i)/S) is a a closed
subscheme of the respective graded piece of Hr,n we have that Cr((X, i)/S) is
a closed subscheme of Hr,n such that the following diagram commutes

Cr((X, i)/S)×S Cr((X, i)/S) Hr,n×S Hr,n

Cr((X, i)/S) Hr,n.

ρ

/

β

/
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We shall call the (graded) commutative monoid object Cr((X, i)/S) the
Chow monoid of r-dimensional relative cycles with respect to i.

Remark 6.4.1. If the scheme S is Nagata then according to [Kol96, Ch. I,
Thm. 4.13] the presheaf Cycleff

d ((X, i)/S, r)
UI

considered as a presheaf on the
category of semi-normal Noetherian Nagata schemes is coarsely represented by
the semi-normalization of Cr,d((X, i)/S) which we denote by (Cr,d((X, i)/S))sn.
Furthermore one easily sees that the canonical map∐

d≥0

Cycleff
d ((X, i)/S, r)

UI
→ Cycleff (X/S, r)UI

is Zariski-locally an isomorphism and so is the map∐
d≥0

h(Cr,d((X,i)/S))sn → h∐
d≥0(Cr,d((X,i)/S)sn).

One can use the universal property of sheafification (with respect to the Zariski
topology) to see that the scheme∐

d≥0

(Cr,d((X, i)/S)sn)

coarsely represents Cycleff (X/S, r)UI . This shows that the seminormalization
of the Chow monoid Cr((X, d)/S) is at least as a scheme independent of how
X is embedded in PnS .

h-representability in terms of Chow monoids

We will shortly show that if X is a scheme of finite type over the Noetherian
scheme S then the presheaf Cycleff (X/S, r)UI is after h-sheafification isomor-
phic to the h-sheafification of a locally Noetherian scheme provided that the
morphism X → S factors as X i→ PnS → S where i is a closed embedding. Fix
now such an embedding i : X → PnS and note that addition of relative effective
cycles gives us maps

γd1,d2 : Cycleff
d1

((X, i)/S, r)
UI
×Cycleff

d2
((X, i)/S, r)

UI
→ Cycleff

(d1+d2)((X, i)/S, r)UI

From Corollary 6.3.23 it follows that the following diagram is commutative

Cycleff
d1

((X, i)/S, r)
UI
× Cycleff

d2
((X, i)/S, r)

UI
Lh(Cr,d1((X, i)/S))× Lh(Cr,d2((X, i)/S))

Cycleff
(d1+d2)((X, i)/S, r)UI

Lh(Cr,(d1+d2)((X, i)/S))

γd1,d2

Φd1×Φd2

Φ(d1+d2)
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where the rightmost vertical arrow is the morphism induced from ρd1,d2 . Apply-
ing sheafification and using Construction E.2.3 we obtain isomorphic monoid
objects in the category of h-sheaves

C•((X, i)/S, r) :=
∐
d≥0

(Cycleff
d ((X, i)/S, r)

UI
)h ∼=

∐
d≥0

Lh(Cr,d((X, i)/S)).

(6.4.3)
Furthermore the canonical inclusion maps Cycleff

d ((X, i)/S, r)
UI
→ Cycleff (X/S, r)UI

induce morphisms of sheaves∐
d≥0

(Cycleff
d ((X, i)/S, r)

UI
)h → (Cycleff (X/S, r)UI)h (6.4.4)

which one readily checks is in fact a morphism of commutative monoid objects
in the category of h-sheaves on Noetherian schemes over S, in other words the
following diagram commutes

C•((X, i)/S, r)× C•((X, i)/S, r) (Cycleff (X/S, r)UI)h × (Cycleff (X/S, r)UI)h

C•((X, i)/S, r) (Cycleff (X/S, r)UI)h.

Moreover we claim that the morphism given in (6.4.4) is an isomorphism.
Indeed this map can be described as the following composition∐
d≥0

(Cycleff
d ((X, i)/S, r)

UI
)h → (

∐
d≥0

Cycleff
d ((X, i)/S, r)

UI
)h → (Cycleff (X/S, r)UI)h

where the first map is an isomorphism since sheafification commutes with
coproducts and from Proposition 6.1.12 it follows easily that the second map is
also an isomorphism. Finally we have a canonical map∐

d≥0

Lh(Cr,d((X, i)/S))→ Lh(Cr((X, i)/S)) (6.4.5)

which one readily checks is a morphism of commutative monoid objects and in
fact an isomorphism since the morphism∐

d≥0

hCr,d((X,i)/S) → hCr((X,i)/S)

is clearly Zariski-locally an isomorphism thus also locally an isomorphism with
respect to the h topology. By combining the isomorphism of (6.4.3), (6.4.4)
and (6.4.5) we obtain the following theorem:

Theorem 6.4.2. Let S be a Noetherian scheme and i : X → PnS be a closed
embedding. Then the h-sheaves (Cycleff (X/S, r)UI)h and Lh(Cr((X, i)/S)) are
isomorphic as h-sheaves of monoids.
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6.5 Q+-representability of relative cycles

In the previous section we saw that after sheafification in the h-topology we
can (under reasonable assumptions) relate effective relative cycles to the sheaf
represented by Cr((X, i)/S). Using Theorem 5.0.1 this allows us to show that if
we instead restrict ourselves to the category of seminormal Noetherian schemes
over S and extend scalars, then we do not have to sheafify to understand
relative cycles in terms of the Chow monoid.

Lemma 6.5.1. Let X → S be a scheme of finite type over a Noetherian scheme
S. Then for any Grothendieck topology t coarser than the h-topology the induced
map of presheaves

(PropCycleff (X/S, r)UI)t ⊗N Q+ → PropCycleff (X/S, r)Q+ (6.5.1)

is an isomorphism.

Proof. Since sheafification and localization preserves monomorphisms the in-
duced map (PropCycleff (X/S, r)UI)h ⊗N Q+ → PropCycleff (X/S, r)Q+ is a
monomorphism. The fact that it is also an epimorphism follows easily from
Proposition 2.3.27.

Remark 6.5.2. Similarly if Λ is a sub semiring of Q+ containing the inverse
of every element of exp. char(S) the map

(PropCycleff (X/S, r)UI)t ⊗N Λ→ PropCycleff (X/S, r)UI ⊗N Λ

is an isomorphism.

Theorem 6.5.3. Let S be a Noetherian scheme and i : X → PnS a closed
embedding and let Cr((X, i)/S) denote the Chow monoid given in (6.4.2).
Then after restricting the presheaves PropCycleff (X/S, r)Q+ and hCr((X,i)/S)

to the category of seminormal Noetherian schemes over S we have a natural
transformation

PropCycleff (X/S, r)Q+ → hCr((X,i)/S) ⊗N Q+

which is an isomorphism of presheaves of monoids.

Proof. By Lemma 6.5.1 and Theorem 6.4.2 we have an isomorphism

PropCycleff (X/S, r)Q+
∼= Lh(Cr((X, i)/S))⊗N Q+ (6.5.2)

hence it is enough to prove that the natural map

hCr((X,i)/S) ⊗N Q+ → Lh(Cr((X, i)/S))⊗N Q+ (6.5.3)
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is an isomorphism. Letting Hr,n be the commutative monoid of (6.2.13) we
have a commutative diagram

hCr((X,i)/S) ⊗N Q+ Lh(Cr((X, i)/S))⊗N Q+

hHr,n ⊗N Q+ Lh(Hr,n)⊗N Q+

As closed embeddings are monomorphisms in the category of schemes and the
Yoneda embedding, the sheafification functor and localization of semi-modules
all preserve monomorphisms it follows that the vertical arrows in our diagram
are monomorphisms. Furthermore by Theorem 5.0.1 the lower horizontal
morphism is an isomorphism and from the commutativity of the following
diagram

Cr((X, i)/S)/S Hr,n

(Cr((X, i)/S)/S)d (Hr,n)d

Cr((X, i)/S) Hr,n,

/

/

∆

/

∆

d·ρ

/

d·β

/

where d is any positive integer, we now easily deduce that the map given in
(6.5.3) is an isomorphism.

Remark 6.5.4. From Remark 5.3.1 and Remark 6.5.2 we see that Theo-
rem 6.5.3 remains true after replacing Q+ with any subsemi-ring Λ containing
the inverse of every element of Exp.Char(S).

Remark 6.5.5. In characteristic zero there are other presheaves of cycles
which are representable. For example in the complex analytic setup Barlet
defines in [Bar75] a presheaf FnX on the category of complex reduced spaces.
Here X is a complex space and the functor FnX associates to each S the set of
of analytic families of n-cycles of X parametrised by S ([KP96, Def.2.5]). It is
proved in [Bar75] that the functor FnX is representable by a reduced complex
space Bn. Moreover If X is a projective variety over the complex numbers,
then the analytification of the classical Chow variety of n-cycles coincides with
Bn ([KP96, Prop.2.8]).

More algebraically if S0 is an affine scheme of characteristic zero and X → S
is a smooth morphism. Then Angéniol defines in [Ang81] a presheaf CpX/S0

on the category of schemes over S0 whose sections may be interpreted as
families of cycles of codimension p. It is proved in op.cit. that this presheaf
is representable by an algebraic space ([Ang81, Thm. 5.2.1]) which in the
complex setup essentially coincides with Barlet’s space after reduction (see
[Ang81, Thm. 6.1.1] for the precise statement).
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Note that it is not necessary to restrict oneself to the category of semi-
normal schemes for the presheaves of cycles due to Barlet and Angéniol to
be representable. However this does not suggest that the seminormality as-
sumption in Theorem 6.5.3 can be dropped. Indeed the presheaves FnX and
CpX/S0

are not defined in terms of Definition 2.1.11, and their definitions are in
fact arguably more complicated. Furthermore Theorem 3.2.9, Corollary 3.2.8,
Theorem 4.3.9 and Example 7.2.3 all advocate the reduction to seminormal
schemes. Restricting our presheaves to seminormal schemes has the advantage
that we can use methods arising from the study of the h-topology, but it also
has the disadvantage that there are interesting schemes such as the spectrum
of the dual-numbers which becomes no different to the spectrum of a field in
this setting.

6.6 An overview of the literature

In this chapter we provided a self-contained construction of the Chow schemes,
which we did to a large extent by combining ideas from [SV00] and [Kol96]. The
following table explains how several of the statements of this chapter compare
to those found in the literature:

Comparison table
Statement Reference(s) Statement

compari-
son

Proof

Proposition 6.1.12 [SV00, Prop.
4.4.8]

Identical Expands

Lemma 6.1.15 [SV00, p.78] Extends Added
Proposition 6.2.11 [SV00, Prop.

3.4.8]
Similar Expands

Lemma 6.3.2 [SV00, Lemma
4.4.12]

Identical Added

Lemma 6.3.5 [Kol96, Ch. I,
M.Lem.3.23.1.2]

Similar Expands

Proposition 6.3.8 [Kol96,
Ch.I,Prop.3.24.4]

Similar Expands

Proposition 6.3.20 [Kol96,
Claim.3.25.1]

Identical Different

Theorem 6.3.25 [SV00,
Cor.4.4.13]

Similar Incorporates simi-
lar ideas, but far
from identical

Corollary 6.3.27 [Kol96, Ch. I,
Thm. 3.21]

Similar Different
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Chapter 7

Relative zero cycles via
symmetric powers

In this final chapter we prove the second main Theorem of the thesis. Just as
in the higher dimensional case considered in the previous chapter this is done
in two steps: first prove representability in a suitable Grothendieck topology
then extend scalars and apply Theorem 5.0.1 to conclude. The first step can
again be divided into two parts: first prove that after sheafification in the qfh
topology the sheaf of effective relative zero cycles on X/S becomes isomorphic
to the sheaf freely generated by X/S, and then prove that the latter sheaf
is again isomorphic to Lqfh(Sym•(X/S)). Thus in the first section of the
chapter we will deal with the first step where we follow [SV00] for the first
needed isomorphism and [Voe96] for the second. Then in the second and final
section we put everything together to obtain the final main Theorem. The
final Proposition of the chapter tells us how our theorem relates to the use of
symmetrization as considered in [SV96] and [Har16].

7.1 Freely generated representable sheaves

For an S-schemeX let N(X/S) denote the presheaf given by T 7→ N(HomS(T,X)),
where N(HomS(T,X)) is the free abelian monoid generated by the set HomS(T,X).
We call this the presheaf of abelian monoids freely generated by hX and denote
its sheafification with respect to a Grothendieck topology t by Nt(X/S). In
an analogous manner one can also define the presheaf of abelian groups freely
generated by hX which we denote by Z(X/S).

The following theorem is [SV00, Theorem 4.2.12]. The proof that we shall
give is essentially the same as in loc. cit. the only difference being that we take
a little more care when dealing with non-reduced schemes.

Theorem 7.1.1. Let X → S be a scheme of finite type over a Noetherian
scheme S. Then one has:
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1. The sheaf (PropCycl(X/S, 0)UI)qfh is canonically isomorphic to the qfh-
sheaf Zqfh(X/S) of abelian groups freely generated by the sheaf of sets
representable by X.

2. The sheaf (PropCycleff (X/S, 0)UI)qfh is canonically isomorphic to the
qfh-sheaf Nqfh(X/S) of commutative monoids freely generated by the
presheaf of sets represented by X.

Proof. We will only prove the second statement. Note first that we have a
canonical morphism N(Xred/S) → N(X/S) which is clearly qfh-locally an
isomorphism. Consider now the closed embedding Xred → Xred×S X such
that the composition with the projection onto Xred gives identity and onto
the second factor gives the canonical map Xred → X. One then has that
δ := cyclXred×S X(Xred) ∈ PropCycleff (X/S, 0)UI(Xred), which gives us a map
hXred/S → PropCycleff (X/S, 0)UI , which again induces a unique morphism

∇ : N(Xred/S)→ PropCycleff (X/S, 0)UI . (7.1.1)

We will show that this is a qfh-local isomorphism. Note that if f : T → Xred

is a morphism from a reduced scheme T then ∇(f) = cyclT ×S X(Γf ) where Γf
denotes the graph of f . Since the irreducible components of a scheme form
a qfh-covering one then easily sees that ∇ is qfh-locally a monomorphism.
To show that it is qfh-locally an epimorphism it is enough to show that if T
is an integral scheme over S and Z ∈ PropCycleff (X/S, 0)UI(T ) then there
is an qfh-covering p : T ′ → T such that cycl(p)(Z) is in the image of ∇(T ′).
If Z =

∑
ai cycl(Zi) with Zi integral schemes, then we will use induction

on the number N = deg(Z/T ) :=
∑
ai deg(Zi/T ), where deg(Zi/T ) is the

degree of the field extension of function fields. Note that if N = 0 there
is nothing to prove. For the inductive step it is sufficient to show that if
p : Z1 → supp(Z) → T is the map induced by Z, then there exists a cycle
Z1 ∈ PropCycleff (X/S, 0)UI(Z1) which is in the image of ∇ and such that

deg(cycl(p)(Z)−Z1) < N.

Note that the cycle cycl(p)(Z) is of the form∑
ni
∑

(mj cyclZ1×S X(Wi,j))

where Wi,j are the irreducible components of the schemes Z1×T Zi. By
Lemma A.2.1 and Example A.1.4 we easily see that∑

mj deg(Wi,j/Z1) = deg(Zi/T ) (7.1.2)

thus ∑
nimj deg(Wi,j/Z1) = deg(Z/T ). (7.1.3)

Let W1,1 be the irreducible component of Z1×T Z1 which is the image of the di-
agonal embedding Z1 → Z1×T Z1. Then cycl(W1,1) ∈ PropCycleff (X/S, 0)UI(Z1)
hence we may set Z1 = n1m1 cycl(W1,1).
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Recall that we use Sym•(X/S) to denote the monoid object
∐
n≥0 Symn(X/S).

The following Proposition is essentially [Voe96, Proposition.3.3.6]. The proof
that we shall give is a little different from Voevodsky’s, yet the central idea is
the same.

Proposition 7.1.2. Let X → S be a scheme of finite type over a Noetherian
scheme S. Suppose in addition that X/S is flat and AF. Let

Ψ : N(X/S)→ hSym•(X/S) (7.1.4)

be the morphism from the presheaf of abelian monoids freely generated by hX
induced by

(f : T → X) 7→ i1 ◦ f (7.1.5)

where i1 : X = Sym1(X/S) → Sym•(X/S) denotes the canonical inclusion.
Then Ψ induces an isomorphism of the associated qfh-sheaves on the category
of Noetherian S-schemes

(Ψ)qfh : Nqfh(X/S)→ Lqfh(Sym•(X/S)) (7.1.6)

from the qfh-sheaf of commutative monoids freely generated by the presheaf of
sets representable by X to the qfh-sheaf associated to the presheaf represented
by Sym•(X/S).

Proof. We first produce an isomorphism in the other direction and prove that
(Ψ)qfh must necessarily be its inverse.

For a given d ∈ N let qd : (X/S)d → Symd(X/S) be the quotient map.
Letting pri : (X/S)d → X denote the projection to the i’th factor we have that
the element

∑d
i=1 pri ∈ N(X/S)((X/S)d) is obviously Σd invariant. Thus by

Lemma 3.3.9 there exists a unique element ud ∈ Nqfh(X/S)(Symd(X/S)) such
that

qd
∗(ud) = (

d∑
i=1

pri)
a ∈ Nqfh(X/S)((X/S)d). (7.1.7)

Now for a Noetherian scheme T over S and a morphism f : T → Sym•(X/S),
we let for each d ∈ N, fd ∈ HomS(f−1(Symd(X/S)), Symd(X/S)) be the map
induced from restricting the morphism f . Note then that the sections

f∗dud ∈ Nqfh(X/S)(f−1(Symd(X/S)))

glue to give an element Θ(f) ∈ Nqfh(X/S)(T ). It is readily checked that this
gives a natural transformation of presheaves of sets. We now claim that

Θ : hSym•(X/S) → Nqfh(X/S)

is in fact a natural transformation of presheaves of commutative monoids. For
f, g ∈ hSym•(X/S)(T ) check that Θ(T )(f) + Θ(T )(g) = Θ(T )(f + g). We may
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clearly assume T to be connected and that there exist numbers d, e ∈ N such
that

f−1(Symd(X/S)) = g−1(Syme(X/S)) = T.

We can then consider the pullback diagram

T ×Symd(X/S)×S Syme(X/S)(X/S)d×S(X/S)e (X/S)d×S(X/S)e

T Symd(X/S)×S Syme(X/S)

pT

pd,e

qd×S qe

fd×Sge

Letting

pd : (X/S)d×
S

(X/S)e → (X/S)d ;

pe : (X/S)d×
S

(X/S)e → (X/S)e

denote the two projections and

i : (X/S)d×
S

(X/S)e → (X/S)d+e

the isomorphism given by Convention 1.6.15, we have the following equalities:

p∗T (f∗dud) = p∗d,ep
∗
dq
∗
dud = p∗d,ep

∗
d(

d∑
i=1

pri)
a; (7.1.8)

p∗T (g∗eue) = p∗d,ep
∗
eq
∗
eue = p∗d,ep

∗
e(

e∑
j=1

prj)
a; (7.1.9)

p∗T (fd + ge)
∗ud+e = p∗d,ei

∗(
d+e∑
l=1

prl). (7.1.10)

Hence we have
p∗T (f∗dud + g∗eue) = p∗T (fd + ge)

∗ud+e (7.1.11)

thus since pT is a qfh-covering we conclude that Θ(T )(f + g) = Θ(T )(f) +
Θ(T )(g).

We now claim that Θ is qfh-locally an isomorphism. Note that for any
morphism f : T → X we can compose with the open embedding X →
Sym•(X/S) to obtain a map g : T → Sym•(X/S) such that g1 = f , hence

Θ(T )(g) = [f ]a ∈ Nqfh(X/S)(T ).

Since Θ is a homomorphism of presheaves of monoids we now easily conclude
that Θ is necessarily a qfh-local epimorphism.
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Suppose now that f, g ∈ hSym•(X/S)(T ) satisfy

Θ(T )(f) = Θ(T )(g).

We want to prove that there exists a qfh-covering pi : Ti → T such that
f ◦ pi = g ◦ pi for all i. Clearly we may again assume T to be connected and
that there exist numbers d, e ∈ N such that

T = f−1(Symd(X/S)) = g−1(Syme(X/S)).

Consider the two following qfh-coverings:

f∗d qd : T ×
Symd(X/S)

(X/S)d → T ; (7.1.12)

g∗eqe : T ×
Syme(X/S)

(X/S)e → T. (7.1.13)

We can find a common refinement of both these coverings say {πα : Tα → T}α∈A
with T -morphisms

rα : Tα → T ×
Symd(X/S)

(X/S)d ; (7.1.14)

sα : Tα → T ×
Syme(X/S)

(X/S)e. (7.1.15)

Letting

pd : T ×
Symd(X/S)

(X/S)d → (X/S)d ; (7.1.16)

pe : T ×
Syme(X/S)

(X/S)e → (X/S)e (7.1.17)

denote the projections, we may then suppose that we have the equality

d∑
i=1

pri ◦ pd ◦ rα =
e∑
j=1

prj ◦ pe ◦ sα (7.1.18)

for every α ∈ A. From this we easily see that we must have d = e and if we set
x = pd ◦ rα and y = pe ◦ sα then by the universal property of fibre products,
we easily see that there is some σ ∈ Σd such that x = ρ(σ) ◦ y, where ρ(σ) is
the automorphism of (X/S)d induced by σ. Hence we must have

qd ◦ x = qd ◦ y : Tα → Symd(X/S) (7.1.19)

from which we conclude that

fd ◦ πα = ge ◦ πα (7.1.20)
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for every α ∈ A which proves that Θ is also qfh-locally a monomorphism. This
proves that the induced morphism

(Θ)qfh : Lqfh(Sym•(X/S))→ Nqfh(X/S) (7.1.21)

is an isomorphism.
It now remains to prove that the composition (Ψ)qfh ◦ (Θ)qfh is the

identity as this implies that (Ψ)qfh must be the inverse of the isomorphism
(Θ)qfh. To this extent note that if T is any Noetherian S-scheme with generic
points η1, . . . , ηr ∈ T and k1, . . . , kr are algebraic closures of the residue fields
k(η1), . . . , k(ηr) then the map

Lqfh(Sym•(X/S))(T )→
r∏
i=1

Lqfh(Sym•(X/S))(Spec(ki))

is injective (this is easily deduced from Theorem 4.3.9). Hence it is enough to
show that the composition (Ψ)qfh ◦ (Θ)qfh coincides with the identity on the
spectrum of an algebraically closed field. To this extent let k be an algebraically
closed field and f be a morphism

f : Spec(k)→ Symd(X/S)
id→ Sym•(X/S)

where id : Symd(X/S) → Sym•(X/S) is the canonical inclusion. Since the
quotient map qd : (X/S)d → Symd(X/S) is finite there is a map

f ′d : Spec(k)→ (X/S)d (7.1.22)

such that we have
f = id ◦ qd ◦ f ′d. (7.1.23)

Thus by construction we have

(Θ)qfh(Spec(k))(f) =
d∑
i=1

(pri ◦ f ′d) (7.1.24)

and from Remark 1.6.17 we see that

(Ψ)qfh(Spec(k))(

d∑
i=1

(pri ◦ f ′d)) = f. (7.1.25)

This completes the proof.
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Reinterpreting rational equivalence of zero cycles

In Section 6.3 we gave a modern proof of the fact that rational equivalence
of cycles can be understood by means of rational curves on the Chow scheme.
We are now almost ready to state and prove the analogue for zero cycles and
symmetric powers.

Lemma 7.1.3. Let Spec(k)→ S be a morphism from a perfect field. Then the
sheafification at Spec(k)

PropCycl(X/S, r)UI(Spec(k))→ (PropCycl(X/S, r)UI)qfh(Spec(k))

is an isomorphism.

Proof. Recall that every quasi-finite morphism to the spectrum of a field is
necessarily a finite morphism. Since every field extension of a perfect field is
separable the claim follows now easily from Lemma 2.3.21.

For a flat AF -scheme X/S we have by Theorem 7.1.1 and Proposition 7.1.2
an isomorphism

Ξ : (PropCycl(X/S, 0)UI)qfh → Lqfh(Sym•(X/S))

where both PropCycl(X/S, 0)UI and hSym•(X/S) take the same values as their
sheafifications at k-points of S where k is a perfect field. The following
Proposition is a generalization of [Ful98, Example 1.6.3].

Proposition 7.1.4. Let k be a perfect field and X → Spec(k) a finite type mor-
phism such that X is AF. Then a zero cycle Z ∈ Cycl(X, 0) is rationally equiv-
alent to zero if and only if there is a rational curve f : P1

k → Sym•(X/ Spec(k))
such that

Z = c(f(0))− c(f(∞))

where c(f(y)) is the cycle on X corresponding to the k-point f(y) on Sym•(X/ Spec(k))
for y ∈ P1

k(k).

Proof. This is proved mutatis mutandis as Proposition 6.3.29.

Remark 7.1.5. Proposition 7.1.4 is inspired by V. Guletskĭı’s (unpublished)
proof in the characteristic zero case.

7.2 Relative zero cycles in terms of the monoid of
symmetric powers

Theorem 7.2.1. Let X → S be a flat finite type morphism to a Noetherian
scheme S such that X/S is AF (Definition 1.5.26). Then after restrcting the
presheaves of monoids hSym•(X/S) and PropCycleff (X/S, 0)Q+ to the category
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of Noetherian seminormal schemes over S we get an isomorphism of presheaves
of monoids:

PropCycleff (X/S, 0)Q+ → hSym•(X/S) ⊗N Q+ (7.2.1)

Proof. By Lemma 6.5.1, Theorem 7.1.1 and Proposition 7.1.2 we always have
the following isomorphisms

PropCycleff (X/S, 0)Q+
∼= Nqfh(X/S)⊗N Q+

∼= Lqfh(Sym•(X/S))⊗N Q+,
(7.2.2)

and after restricting ourselves to the category of Noetherian seminormal schemes
over S we obtain by Proposition 1.6.19 and Theorem 5.0.1 an isomorphism of
monoids

hSym•(X/S) ⊗N Q+ → Lqfh(Sym•(X/S))⊗N Q+

which completes the proof.

Remark 7.2.2. From Remark 5.3.1 and Remark 6.5.2 we see that Theo-
rem 7.2.1 remains true after replacing Q+ with any subsemi-ring Λ containing
the inverse of every element of Exp.Char(S).

Example 7.2.3. Let S be a Noetherian scheme of characteristic zero, and
consider the maps

∇ : N(Xred/S)→ PropCycleff (X/S, 0)UI ;

Ψ : N(X/S)→ hSym•(X/S)

From (7.1.1) and (7.1.4) respectively. These maps are qfh-locally isomorphisms
hence by Corollary 3.2.8 and Theorem 4.3.9 it follows that if the scheme S is
seminormal then we have an isomorphism

Ω(S) : PropCycleff (X/S, 0)UI(S)→ hSym•(X/S)(S). (7.2.3)

Suppose in addition that the seminormal scheme S is integral. For a proper
relative zero cycle Z =

∑
i ai cycl(Zi) ∈ PropCycleff (X/S, 0)UI(S) where Zi

are integral closed subschemes of X set d = d(Z) :=
∑
ai[k(Zi) : k(S)]. We

claim that the map Ω(S)(Z) : S → Sym•(X/S) factors through the inclusion

id : Symd(X/S)→ Sym•(X/S).

Indeed it is enough to show that if K is an algebraic closure of k(S) and
t : Spec(K) → S is the obvious map, then the map Ω(S)(Z) ◦ t factors
through id. From Proposition 1.7.9 it follows that d(cycl(t)(Z)) = d hence
we can reduce to the case where S is an algebraically closed field, but then
the claim follows easily from the construction of the maps ∇ and Ψ. In
particular if there exists a cycle Z such that d(Z) = 1 then there exists a
section of the map X → S. The necessity of such a section strongly motivates
the restriction to seminormal schemes in Theorem 7.2.1. Indeed consider for
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instance the cusp C = V (y2 − x3) ⊂ A2
k where k is a field of characteristic 0.

The seminormalization of this scheme is the normalization X = A1
k → C, and

the scheme C is geometrically unibranched. Thus the generic point η ∈ X is
an element of PropCycleff (X/C, 0)UI(C), but the morphism X → C has no
sections.

Proposition 7.2.4. Let X → S be a flat finite type morphism to a Noetherian
scheme S such that X/S is AF. Let Λ be any sub semi-ring of Q+ such
Exp.Char(S) ⊂ Λ×1 Let

Υ : hSym•(X/S) ⊗N Λ→ PropCycleff (X/S, 0)UI ⊗N Λ

be the following compositions of isomorphisms (Theorem 7.2.1, Remark 7.2.2)

hSym•(X/S) ⊗N Λ→ Nqfh(X/S)⊗N Λ→ PropCycleff (X/S, 0)UI ⊗N Λ.

Then for any normal Noetherian scheme T over S the inverse of Υ(T ) is given
by symmetrization as in [Har16, Definition 3.7.1].

Proof. Let f : Spec(k) → Symd(X/S)
id→ Sym•(X/S), where id denotes the

inclusion Symd(X/S) → Sym•(X/S) be a morphism from an algebraically
closed field k. From the construction of Υ we see that

Υ(Spec(k))(f) =
d∑
i=1

cyclSpec(k)×S X(Γpri◦f ′d), (7.2.4)

where f ′d : Spec(k) → (X/S)d is any map such that we have fd = qd ◦
f ′d, where qd denotes the quotient (X/S)d → Symd(X/S). Setting αi :=
cyclSpec(k)×S X(Γpri◦f ′d), we easily see that the symmetrization of αi which we
denote by sym(αi) is exactly the morphism i1 ◦ pri ◦ f ′d. Thus we have

sym(Υ(Spec(k))(f))) =

d∑
i=1

sym(αi) =
∑
i

(i1 ◦ pri ◦ f ′d) = f. (7.2.5)

This proves the Proposition in the special case where T is an algebraically
closed field. For the general case note that if {ηi}ni=1 are the generic points of a
normal Noetherian scheme T and we let ki be algebraic closures of the residue
fields k(ηi) then we have a commutative diagram

hSym•(X/S) ⊗N Λ(T ) PropCycleff (X/S, 0)UI ⊗N Λ(T )

∏n
i=1 hSym•(X/S) ⊗N Λ(Spec(ki))

∏
PropCycleff (X/S, 0)UI ⊗N Λ(Spec(ki)).

Υ(T )

1For a semi-ring A we let A× denote the units of A.
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where the lower horizontal map is
∏

Υ(Spec(ki)). Since both the vertical
arrows are inclusions and symmetrization also commutes with pullbacks ([Har16,
Proposition 3.6.6]) we conclude the proof.

Remark 7.2.5. Proposition 7.2.4 gives another reason why the functors from
Theorems 3.7.5, 3.7.7 and 3.7.8 of [Har16] are full (see Remark 3.7.11 of op cit).
Furthermore our proposition taken together with Proposition 2.5.13 also shows
that Theorem 6.8 of [SV96] is a special case/restriction of Theorem 7.2.1.
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Epilogue

The author would like to list some open questions related to the material we
have seen in this thesis.

1. It is known that semi and weak normality are both stable under smooth
base change. The case of weak normality can be deduced from Man-
aresi’s description of the weak normalization (see [Man80]), while for
seminormality the proof is rather different as it uses Traverso’s gluings
(see [GT80]). Is it possible to prove an analogous result for (B/A)η as
defined in Section 4.1?

2. It was already asked in [AB69] if the seminormalization of a Noetherian
scheme is necessarily Noetherian. As far as we are aware this question
remains open to this day. If this could be answered affirmatively then
the results of this thesis requiring seminormality would be somewhat
strengthened as this would mean that seminormalization induces an
endofunctor on the category of Noetherian schemes.

3. Are there interesting cases of morphisms X → S and dimension functions
on S such that Suslin-Voevodsky’s relative cycles on X/S of dimension r
are exactly the cycles on X/S with δ-dimension r as defined in [Stacks,
Tag 02QQ]?

4. If the answer to the previous question is affirmative, is it then possible to
generalize Proposition 7.1.4 and/or Proposition 6.3.29 to the setting of
rational equivalence given in [Stacks, Tag 02RW], [Stacks, Tag 02S3]?

5. Is it possible to say anything about the locus of points on S where a
relative cycle on X/S becomes rationally equivalent to zero?
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Appendix A

The length of a module

A.1 Definition and basic properties

Definition A.1.1. LetM be an A-module. A chain of submodules of a module
M is a sequence (Mi)0≤i≤n of submodules of M such that

M = M0 )M1 ⊃ . . . )Mn = 0

The length of the chain is n.
A composition series of M is a maximal chain, that is one in which no extra

submodules can be inserted or equivalently that each quotient Mi−1/Mi has no
submodules except 0 and itself which again is equivalent to Mi−1/Mi

∼= A/mi

where mi is some maximal ideal of A.

Proposition A.1.2 ([AM69, Proposition 6.7]). Suppose that M has a compo-
sition series of length n. Then every composition series of M has length n, and
every chain in M can be extended to a composition series.

Definition A.1.3. If the A module M has a composition series of length n
we say that the length of the A-module M is n and denote this by

lengthA(M) = n

Example A.1.4 ([AM69, Prop.6.10]). For a finite dimensional k-vector space
V we have lengthk(V ) = dimk(V ).

Example A.1.5. Let A be a DVR with uniformizer π and valuation v . For
any nonzero a ∈ A, consider the A-module M = A/(a). The sub A-modules of
M are the ideals of A/(a) which correspond to the ideals of A containing a. The
ideals of A are ideals of the form (πi), with i ∈ N, and we have (πval(a)) = (a),
hence

M = A/(a) ) (π)A/(a) ) . . . ) (πval(a)−1)A/(a) ) (πval(a))A/(a) = 0

is a composition series of M , thus lengthA(M) = val(a).
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Proposition A.1.6 ([AM69, Proposition 6.8]). The module M has a composi-
tion series if and only if M satisfies both the ascending and descending chain
conditions.

Corollary A.1.7. Let A be a Noetherian one-dimensional ring. If x ∈ A is
not a zero divisor, then A/(x) has finite length.

Proof. By Krull’s Hauptidealsatz we have dimA/(x) = 0, thus A is Artinian
and thus satisfies both chain conditions.

Proposition A.1.8 ([AM69, Prop. 6.9]). The length lengthA(M) is an additive
function on the class of all A-modules of finite length.

Corollary A.1.9. Let A be a one dimensional Noetherian ring. If a, b ∈ A
where either a or b is not a zero divisor, then

lengthA(A/(ab)) = lengthA(A/(a)) + lengthA(A/(b))

and these lengths are finite.

Proof. The last assertion follows from Corollary A.1.7. For the first apply
Proposition A.1.8 to the exact sequence

0→ A/(a)
·b→ A/(ab)→ A/(b)→ 0

Lemma A.1.10. If M has finite length with a composition series

M0 = M )M1 ) . . . )Mn = 0.

Then

(1) each Mi−1/Mi
∼= A/mi for some maximal ideal mi,

(2) given a maximal ideal m ⊂ A we have

#{i | mi = m} = lengthAm
(Mm).

(3) If p ⊂ A is a prime ideal which is not maximal then lengthAp
(Mp) = 0.

Hence
lengthA(M) =

∑
p

lengthAp
(Mp),

where the sum is over all the prime ideals of A.
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Proof. For (1): since Mi−1/Mi is simple we have a maximal ideal mi of A
such that Mi−1/Mi

∼= A/(m) . For (2) (and (3)): Suppose p ⊂ A is any
prime ideal. If we localize the composition series provided in the statement of
this Lemma at p we can start from (M0)p and see if it is equal to (M1)p. If
so, then we remove (M0)p from the chain and move our way down the chain
in this fashion removing (Mi−1)p whenever it coincides with (Mi)p. In this
way we obtain a composition series of Mp as an Ap-module. Note that in the
aforementioned process of making a composition series of Mp we kept (Mi)p if
and only if (Mi/Mi+1)p 6= 0 which is the case if and only if mi = p. Hence the
result follows and moreover we have also shown that if p is not maximal then
we must necessarily have lengthAp

(Mp) = 0.

Lemma A.1.11. Let A be a ring with maximal ideal m. Suppose that M is
an A-module with mM = 0, then the length of M as an A-module agrees with
the dimension of M as an A/m vector space. The length is finite if and only if
M is a finitely generated A-module.

Proof. Under the assumptions onM we see that any sub A-module ofM is also
a sub A/m-module of M , and so any composition series of M as an A-module
is also a composition series of M as an A/m-module, thus the first assumption
follows. The second follows by picking a basis for M as an A/m-module and
producing the obvious composition series.

A.2 Length and homomorphisms

Lemma A.2.1 ([Stacks, Tag 02M0]). Let A be a local ring with maximal ideal
m. Let B be a semi-local ring with maximal ideals mi, i = 1, . . . , n. Suppose
that A→ B is a homomorphism such that each mi lies over m and such that

[κ(mi) : κ(m)] <∞.

Let M be a B-module of finite length. Then

lengthA(M) =
∑

i=1,...,n
[κ(mi) : κ(m)] lengthBmi

(Mmi),

in particular lengthA(M) <∞.

Proof. Let M = M0 )M1 ) . . . )MN = 0 be a composition series for M as
a B-module. We have that Mk/Mk+1

∼= B/mj(k) with j(k) ∈ {1, . . . , n}. Set
di = #{k ∈ {0, . . . , N} | j(k) = i}, then by additivity of length we have that

lengthA(M) =
N−1∑
k=0

lengthA(Mk/Mk+1)

=
n∑
i=1

di lengthA(B/mi) =
n∑
i=1

lengthBmi
(Mmi) · [k(mi) : k(m)].
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Lemma A.2.2. Let A → B be a flat local homomorphism of Artinian local
rings. Then

lengthB(B) = lengthA(A) · lengthB(B/mB)

where m is the maximal ideal of A.

Proof. Let
A = I0 ) I1 ) . . . ) Ir = 0

be a composition series of A as a module over itself. Then Ii/Ii+1
∼= A/m for

each i and since B is flat over A we have

(IiB/Ii+1B) ∼= (Ii/Ii+1)⊗A B ∼= B/mB

for each i. Thus we have a filtration

B = I0B ) I1B ) . . . ) IrB = 0

and using that length is additive, we then obtain

lengthB(B) = r · lengthB(B/mB).

Lemma A.2.3 ([Stacks, Tag 02M1]). Let A→ B be a flat local homomorphism
of local rings. Then for any A-module M we have

lengthA(M) lengthB(B/mAB) = lengthB(M ⊗A B).

In particular, if lengthB(B/mAB) <∞ then M has finite length if and only if
M ⊗A B has finite length.

Proof. The ring map A → B is faithfully flat. Hence if 0 = M0 ⊂ M1 ⊂
. . . ⊂Mn = M is a chain of length n in M , then the corresponding chain 0 =
M0⊗AB ⊂M1⊗AB ⊂ . . . ⊂Mn⊗AB = M⊗AB has length n also. This proves
lengthA(M) =∞⇒ lengthB(M ⊗A B) =∞. Next, assume lengthA(M) <∞.
In this case we see that M has a filtration of length ` = lengthA(M) whose
quotients are A/mA. Arguing as above we see that M ⊗A B has a filtration of
length ` whose quotients are isomorphic to B ⊗A A/mA = B/mAB. Thus the
lemma follows.
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Appendix B

Commutative Semi-Algebra

B.1 Monoids, semi-rings and semi-modules

Definition B.1.1. A monoid is a pair (A, ·) where A is a set and · a binary
operation A×A→ A satisfying the following two properties:

(Associativity) for all a, b, c ∈ A we have

a · (b · c) = (a · b) · c

(Identity) there exists an element e ∈ A such that a · e = e · a = a for all a ∈ A.

A monoid (A, ·) is said to be commutative or abelian if for all a, b ∈ A we have
a · b = b · a.

Definition B.1.2. A Semi-ring1 is an algebraic structure (A,+, ·, 0, 1) satis-
fying the following properties:

1. (A,+, 0) is A a commutative monoid.

2. (A, ·, 1) is a commutative monoid.

3. a(b+ c) = ab+ ac for all a, b, c ∈ A.

4. a · 0 = 0 for all a ∈ A.

Example B.1.3. The prime example of a semi-ring, and especially in this
thesis, is the natural numbers N together with the usual addition, multiplication,
0 and 1. Another example typical for us is the set of positive rational numbers
denoted Q+.

Definition B.1.4. A semi-ring homomorphism from A to B is a function
f : A→ B satisfying the following properties:

1We will only be interested in commutative semi-rings in this text, and therefore omit
the adjective "commutative".
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1. f(x+ y) = f(x) + f(y) and f(xy) = f(x)f(y) for all x, y ∈ A.

2. f(0) = 0 and f(1) = 1.

Definition B.1.5. Let A be a semi-ring. A semi-module over A, or A-semi-
module for short, is a commutative monoid (M,+, 0) together with a function
A×M →M , called the multiplication of scalar map, satisfying the following
conditions:

1. a(m+ n) = am+ an for all a ∈ A and m,n ∈M .

2. (a+ b)m = am+ bm for all a, b ∈ A and m ∈M .

3. (ab)m = a(bm) for all a, b ∈ A and m ∈M .

4. 1m = m for all m ∈M

5. 0m = 0 for all m ∈M and a0 = 0 for all a ∈ A.

Definition B.1.6. A homomorphism of semi-modules f : A→ B is a homo-
morphism of the underlying commutative monoids such that for all a ∈ A and
m ∈M we have f(am) = af(m).

B.2 Localization

We introduce localization of semi-rings and semi-modules following [Nas18].

Definition B.2.1. A multiplicatively closed subset of a semi-ring A is a subset
S containing the multiplicative identity which is closed under multiplication, in
otherwords the action · endows S with the structure of a commutative monoid
(S, ·, 1).

Furthermore an element a ∈ A is a unit , or invertible , if there exists a
b ∈ A such that ab = 1. Such an element b is clearly unique if it exists and
we call it the inverse of a written b = a−1. More generally if M is an A-semi-
module then a ∈ A is said to be a unit in M if the induced endomorphism of
M given by m 7→ am is an isomorphism.

Definition B.2.2. Let S be a multiplicatively closed subset of a semi-ring A.
A localization of A with respect to S is a semi-ring homomorphism λS :

A→ S−1A such that the image of any s ∈ S in S−1A is a unit and if ϕ : A→ B
is any other semi-ring homomorphism satisfying this property then there exists
a unique semi-ring homomorphism ϕ′ : S−1A→ B such that ϕ = ϕ′ ◦ λS .

Similarly if M is a semi-module over a semi-ring A then a localization of M
with respect to S is an A-semi-module homomorphism γS : M → S−1M such
that every s ∈ S is a unit in S−1M and any other such map factors uniquely
through γS .
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Proposition B.2.3. Let A be a semi-ring, S a multiplicatively closed subset
of A and M an A-semi-module. Then the localization of A (resp. of M) with
respect to S exists.

Proof. We first consider the case of M . Let ∼ be the relation on S × M
defined by (s,m) ∼ (t, n) if there exists some u ∈ S such that utm = usn. Set
S−1M := S ×M/ ∼ and denote the class of (s,m) by m/s ∈ S−1M . Define
addition by

m/s+ n/t = (tm+ sn)/st. (B.2.1)

It is easy to check that this is well defined and gives S−1M the structure of
an A-semi-module by a(m/s) = am/s. Furthermore it is straightforward to
check that every s ∈ S is a unit in S−1M . Let γS : M → S−1M be given by
m 7→ m/1. If ϕ : M → N is any homomorphism of A-semi-modules where
every element of S is a unit in N then ϕ then letting ϕ′ : S−1M → N be given
by taking m/s to the element n in N such that sn = ϕ(m) is easily seen to be a
well defined morphism and we clearly have ϕ = ϕ′◦γS . Furthermore uniqueness
of ϕ′ is immediate hence we have proved the existence of the localization of M
with respect to S.

The localization of the semi-ring A with respect to S is similar. Indeed
consider first A as a module over itself and localize this module with respect
to S. This gives us an A-module homomorphism γS : A → S−1A given by
a 7→ a/1. Furthermore we can define multiplication on S−1A as usual:

(a/s) · (b/t) = (ab/st). (B.2.2)

It is a routine exercise to see that (A,+, ·, 0, 1) is a semi-ring and that the
A-module homomorphism γS is also a semi-ring homomorphism. Furthermore
if ϕ : A→ B is a semi-ring homomorphism taking every s ∈ S to a unit in B
then by considering B as an A-semi-module and from what we have shown the
map ϕ′ : S−1A→ B given by a/s 7→ ϕ(s)−1 · ϕ(a) is the unique map which ϕ
factors through and one checks easily that ϕ′ is a semi-ring homomorphism
thus completing the proof.

Throughout by S−1A,S−1M will denote the semi-ring and semi-module
constructed in the proof of Proposition B.2.3 respectively.

Note that the A-semi-module S−1M can be given the structure of an
S−1A-semi-module by setting

(a/s) · (m/t) = (am/st), (B.2.3)

and if we ever speak of S−1M as an S−1A-semi-module this is the multiplication
of scalar-map we are referring to.

Example B.2.4. Note that the positive rational numbers Q+ is the localization
of the semi-ring N with respect to the multiplicatively closed subset N \ {0}.
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Notation B.2.5. For a number n ∈ N we denote by N[1/n] the localization
of N with respect to the multiplicatively closed subset {ni}i∈N.

It is easy to see from the universal property of localization that it is functorial.
For a morphism of A-semi-modules ϕ : M → N we let S−1ϕ : S−1M → S−1N
denote the canonically induced A-semi-module homomorphism. Furthermore it
is clear that S−1ϕ can also be understood as an S−1A-module homomorphism
in a canonical manner.

Lemma B.2.6. Let ϕ : M → N be a homomorphism of semi-modules over
the semi-ring A and S a multiplicatively closed subset of A. The following
assertions hold true:

1. If ϕ is injective then so is the induced map S−1ϕ : S−1M → S−1N .

2. If ϕ is an isomorphism (in the category of A-semi-modules) then so is
the induced map S−1ϕ.

Proof. For Item 1: If we have m1/s1,m2/s2 ∈ M mapping to the same
element in S−1N then we necessarily have

ϕ(m1)/s1 = ϕ(m2)/s2 (B.2.4)

hence there is some t ∈ S such that

ts2ϕ(m1) = ts1ϕ(m2) (B.2.5)

but then by injectivity of ϕ we obtain

t(s2m1) = t(s1m2) (B.2.6)

hence m1/s1 = m2/s2 ∈ S−1M .
For Item 2: It is easy to see that a map of A-semi-modules is an isomor-

phism if and only if the underlying set theoretic map is a bijection. From
Item 1 it is enough to show that S−1ϕ is surjective, but this is obvious.

Remark B.2.7. As mentioned in the proof of Lemma B.2.6 it is obvious
that the Lemma is also true for surjective morphisms. Moreover we also have
that S−1(−) takes monomorphisms (resp. isomorphisms) in the category of
A-semi-modules to monomorphisms (resp. isomorphisms) in the category of
S−1A-semi-modules. Furthermore by considering S−1ϕ as a morphism of
semi-modules over A it will be a monomorphism in this category if ϕ is.
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B.3 Tensor product

Definition B.3.1. Let A be a semi-ring and M,N,P semi-modules over A.
A set theoretic map f : M×N → P is said to be A-bilinear if for anym ∈M

and n ∈ N the two induced maps N → P,M → P given by x 7→ f(m,x) and
y 7→ f(y, n) respectively are both A-semi-module homomorphisms.

Definition B.3.2. Let A be a semi-ring and M,N semi-modules over A. A
tensor product2 ofM andN over A is an A-bilinear mapM×N →M⊗AN such
that for any A-bilinear map M ×N → P there exists a unique A-semi-module
homomorphism M ⊗A N → P making the following diagram commute

M ×N P

M ⊗A N

∃! (B.3.1)

Proposition B.3.3. Let A be a semi-ring and M,N semi-modules over A.
Then the tensor product M ⊗A N exists.

Proof. We provide the construction given in for instance [Ban13]. Let F be
the free commutative monoid generated by the set M ×N and let ∼ be the
congruence relation on F generated by all pairs of the form

((m+m′, n), (m,n)+(m′, n)), ((m,n+n′), (m,n)+(m,n′)), ((am, n), (m, an)),
(B.3.2)

m,m′ ∈ M ;n, n′ ∈ N ; a ∈ A. Set M ⊗A N := F/ ∼ and denote the image of
m× n in M ⊗A N by m⊗ n. The commutative monoid M ⊗A N is then an
A-semi-module with

a(m⊗ n) = (am)⊗ n = m⊗ (an). (B.3.3)

To see that the canonical map M × N → M ⊗A N satisfies the universal
property we refer the reader to [Kat04].

One sees immediately from the universal property of the tensor product
that given any A-semi-module N then (−)⊗A N gives an endofunctor on the
category of A-semi-modules.

2As explained in [Ban13] there are two non-isomorphic tensor products in the litterature,
both called the tensor product and both written M ⊗AN . The notion defined here is the one
analogous to the standard notion we know from commutative algebra. The tensor product
found in for instance [Gol99] satisfies a different universal property.
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B.4 Extension of scalars

Let M be an A-semi-module and A → B be a semi-ring homomorphism.
Then using the universal property of the tensor product we see that the A-
semi-module M ⊗A B can be given the structure of a B-semi-module given
by

b′ · (m⊗ b) = m⊗ (b′b). (B.4.1)

We say that this B-semi-module has been obtained from M by extension of
scalars.

If N is a semi-module over a semi-ring B and we have semi-ring homo-
morphism ϕ : A → B then N inherits an A-semi-module structure given by
a · n := ϕ(a) · n. We say then that this A-module was obtained from N by
restriction of scalars. Just as in the case of modules over rings, extension
and restriction of scalars of semi-modules over semi-rings gives an adjunction
[Kat04, Proposition 4.1].

Just as in the case of modules over rings we have that extending scalars of
a semi-module to a localization of the semi-ring is the same as localizing the
semi-module:

Lemma B.4.1. Let A be a semi-ring, S a multiplicatively closed subset of A
and M a semi-module over A. The map

S−1A⊗AM → S−1M (B.4.2)

induced by the bilinear map (a/s)×m 7→ am/s is an isomorphism of A (and
S−1A) semi-modules. Furthermore it canonically induces a natural isomorphism
between the endofunctors S−1A⊗A (−) and S−1(−)

Proof. To prove that S−1A ⊗A M → S−1M is an isomorphism it is enough
to show that it gives a bijection of underlying sets. Surjectivity is clear, so it
remains to prove injectivity. Note first that if

∑
(ai/si)⊗mi is an element of

S−1A⊗AM then if we set s =
∏
si and ti =

∏
j 6=i sj , we have∑

i

(ai/si)⊗mi =
∑
i

(tiai/s)⊗mi =
∑
i

(1/s)⊗(tiaimi) = (1/s)⊗(
∑
i

tiaimi)

(B.4.3)
hence every element of S−1A⊗AM is of the form (a/s)⊗m. Now if (a/s)⊗m
and (b/t)⊗ n have the same image in S−1M then we have

am/s = bn/t ∈ S−1M (B.4.4)

hence there is some u ∈ S such that

utam = usbn ∈M. (B.4.5)
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Now we have

(a/s)⊗m = (uta/stu)⊗m = (1/stu)⊗ (usbn) = (usb/stu)⊗ n = (b/t)⊗ n,
(B.4.6)

showing injectivity. The final statement is now checked straightforwardly.

Typically in this thesis we only extend scalars from N to a localization of
this semi-ring. Lemma B.4.1 and Lemma B.2.6 tells us that in this case the
extension of scalars functor will preserve monomorphisms.
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Appendix C

Henselian rings and
unibranched schemes

C.1 Henselian rings

In this section we state some standard results concerning Henselian rings and
how any local (Noetherian) ring can be embedded in such a ring. Our main
references are [Mil80] and [Stacks].

Henselian rings

Definition C.1.1 ([Stacks, Tag 04GF]). Let (R,m, κ) be a local ring.

1. We say R is Henselian if for every monic f ∈ R[T ] and every root a0 ∈ κ
of f such that f ′(a0) 6= 0 there exists an a ∈ R such that f(a) = 0 and
a0 = a.

2. We say R is strictly Henselian if R is Henselian and its residue field is
separably algebraically closed.

The following lemma shows that there are many ways to check if a ring is
Henselian;

Lemma C.1.2 ([Stacks, Tag 04GG]). Let (R,m, κ) be a local ring. The
following are equivalent

(1) R is Henselian,

(2) for every f ∈ R[T ] and every root a0 ∈ κ of f such that f ′(a0) 6= 0 there
exists an a ∈ R such that f(a) = 0 and a0 = a,

(3) for any monic f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) =
1 there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h,
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(4) for any monic f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) =
1 there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h
and moreover degT (g) = degT (g0),

(5) for any f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1
there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h,

(6) for any f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1
there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h
and moreover degT (g) = degT (g0),

(7) for any étale ring map R → S and prime q of S lying over m with
κ = κ(q) there exists a section τ : S → R of R→ S,

(8) for any étale ring map R → S and prime q of S lying over m with
κ = κ(q) there exists a section τ : S → R of R→ S with q = τ−1(m),

(9) any finite R-algebra is a product of local rings,

(10) any finite R-algebra is a finite product of local rings,

(11) any finite type R-algebra S can be written as A×B with R→ A finite
and R→ B not quasi-finite at any prime lying over m,

(12) any finite type R-algebra S can be written as A×B with R→ A finite
such that each irreducible component of Spec(B⊗R κ) has dimension ≥ 1,
and

(13) any quasi-finite R-algebra S can be written as S = A× B with R → A
finite such that B ⊗R κ = 0.

Corollary C.1.3. Let (R,m, k) be a Henselian ring. If R→ S is a finite local
homomorphism of local rings, then S is a Henselian local ring. In particular if
R is Henselian and J is an ideal of R, then R/J is Henselian.

A nice class of rings satisfying Hensels lemma is the complete local rings;

Lemma C.1.4 ([Stacks, Tag 04GM]). Let (R,m, κ) be a complete local ring,
then R is Henselian.

Example C.1.5. Recall that the ring of p-adic integers is the ring Zp := Ẑ(p).
Its elements are formal power series of the form

∞∑
i=0

aip
i (0 ≤ ai ≤ p− 1).

Since this ring is complete it is Henselian.
We now show how we can use the fact that the ring of 7-adic integers is

Henselian to prove that 2 has a root in Z7.
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Consider the polynomial

f(T ) = T 2 − 2 ∈ Z7[T ],

when reduced mod (7) we get the polynomial

f̄(T ) = T 2 − 2 ∈ F7

which has the roots ±3, moreover since f̄ ′(3) = 6 6= 0 ∈ F7 we get from part (2)
of Lemma C.1.2 that the root 3 lifts to an element a ∈ Z7 such that f(a) = 0
that is a2 = 2.

Henselization

Definition C.1.6. Let R be a local ring. A Henselization of R is a local
homomorphism of local rings i : R→ Rh where Rh is a Henselian ring satisfying
the following universal property: If j : R→ H is a local homomorphism to a
local Henselian ring, then there exists a unique morphism j′ : Rh → H such
that j = j′ ◦ i.

A strict Henselization of a local ring R is a local homomorphism of local
rings i : R → Rsh such that any local homomorphism j : R → H with H
strictly Henselian factors through i : R → Rsh, moreover the factorisation is
to be uniquely determined once the induced map Rsh/msh → H/mH has been
given.

For a local ring (R,m, k) the Henselization Rh always exists. We provide
the construction:

We follow [Mil80] and introduce the notion of an étale neighborhood of the
local ring R. It is a pair (B, q) with B an étale R-algebra and q ∈ SpecB a
prime ideal lying over m such that k(q) ∼= k. A morphism of étale neighborhoods
(B, q)→ (B′, q′) is an R-algebra map ϕ : B → B′ such that ϕ−1(q′) = q. Using
the tensor product one sees that the category of étale neighborhoods of R is a
filtered category.

We set
Rh := colim(B,q)B.

The ring Rh consists of triples

(B, q, f)

with (B, q) an étale neighborhood of R and f ∈ B, and two such such triples
(B, q, f), (B′, q′, f ′) define the same element of Rh if and only if there exists an
étale neighborhood (B′′, q′′) and morphisms of étale neighborhoods ϕ : (B, q)→
(B′′, q′′) and ϕ′ : (B′, q′)→ (B, q′′) such that ϕ(f) = ϕ′(f ′).

The ring Rh satisfies the following properties:
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Lemma C.1.7 ([Stacks, Tag 04GN]). Let (R,m, κ) be a local ring. There
exists a local ring map R→ Rh with the following properties

(1) Rh is Henselian,

(2) Rh is a filtered colimit of étale R-algebras,

(3) mRh is the maximal ideal of Rh, and

(4) κ = Rh/mRh.

Lemma C.1.8. Suppose that I is an ideal of the local ring A. Then the
Henselization of A/I is Ah/IAh.

Proof. By Corollary C.1.3 we have that the local ring Ah/IAh is Henselian.
Using the universal property of Ah we easily check that Ah/IAh satisfies the
universal property of (A/J)h.

Example C.1.9 ([Mil80, Ch. 1, Sec.4, Example 4.10]). Let k be a field, and
let A be the localization of k[T1, . . . , Tn] at (T1, . . . , Tn). The Henselization of
A is the subring of k[[T1, . . . , Tn]] consisting of the formal power series which
are algebraic over A.

The strict Henselization of a local ring (R,m, k) also exists:

Lemma C.1.10 ([Stacks, Tag 04GP]). Let (R,m, κ) be a local ring. Let
κ ⊂ κsep be a separable algebraic closure. There exists a commutative diagram

κ // κ // κsep

R //

OO

Rh //

OO

Rsh

OO

with the following properties

(1) the map Rh → Rsh is local

(2) Rsh is strictly Henselian,

(3) Rsh is a filtered colimit of étale R-algebras,

(4) mRsh is the maximal ideal of Rsh, and

(5) κsep = Rsh/mRsh.

The strict Henselization Rsh given in lemma C.1.10 is constructed in a
similar manner to that of the Henselization. The only difference being that in
stead of étale neighborhoods, we use triples (S, q, α) where R→ S is étale, q is
a prime of S lying over m, and α : k(q)→ ksep is an embedding of extensions
of k.

228

https://stacks.math.columbia.edu/tag/04GN
https://stacks.math.columbia.edu/tag/04GP


More properties of the (strict) Henselization and reflected
properties

We first state a bunch of results concerning the maps R→ Rh → Rsh.

Lemma C.1.11 ([Stacks, Tag 07QM]). Let (R,m, κ) be a local ring. Then we
have the following

1. R→ Rh → Rsh are faithfully flat ring maps,

2. mRh = mh and mRsh = mhRsh = msh,

3. R/mn = Rh/mnRh for all n,

4. there exist elements xi ∈ Rsh such that Rsh/mnRsh is a free R/mn-module
on xi mod mnRsh.

Lemma C.1.12 ([Stacks, Tag 07QN]). Let (R,m, κ) be a local ring. Then

1. R→ Rh, Rh → Rsh, and R→ Rsh are formally étale,

2. R→ Rh, Rh → Rsh, resp. R→ Rsh are formally smooth in the mh, msh,
resp. msh-topology.

Next we see how many properties of (R,m) are passed (and in some cases
shared by) to Rh and Rsh.

Lemma C.1.13 ([Stacks, Tag 06LJ]). Let R be a local ring. The following are
equivalent

1. R is Noetherian,

2. Rh is Noetherian, and

3. Rsh is Noetherian.

In this case we have

(a) (Rh)∧ and (Rsh)∧ are Noetherian complete local rings,

(b) R∧ → (Rh)∧ is an isomorphism,

(c) Rh → (Rh)∧ and Rsh → (Rsh)∧ are flat,

(d) R∧ → (Rsh)∧ is formally smooth in the m(Rsh)∧-adic topology,

(e) (R∧)sh = R∧ ⊗Rh Rsh, and

(f) ((R∧)sh)∧ = (Rsh)∧.

Reducedness passes to the (strict) henselization.
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Lemma C.1.14 ([Stacks, Tag 06DH]). Let R be a local ring. The following
are equivalent: R is reduced, the henselization Rh of R is reduced, and the strict
henselization Rsh of R is reduced.

Lemma C.1.15 ([Stacks, Tag 06DI]). Let R be a local ring. The following
are equivalent: R is a normal domain, the henselization Rh of R is a normal
domain, and the strict henselization Rsh of R is a normal domain.

Lemma C.1.16 ([Stacks, Tag 06LK]). Given any local ring R we have dim(R) =
dim(Rh) = dim(Rsh).

Lemma C.1.17 ([Stacks, Tag 06LN]). Let R be a Noetherian local ring. The
following are equivalent: R is a regular local ring, the henselization Rh of R is
a regular local ring, and the strict henselization Rsh of R is a regular local ring.

Lemma C.1.18 ([Stacks, Tag 06LN]). Let R be a Noetherian local ring. Then
R is a discrete valuation ring if and only if Rh is a discrete valuation ring if
and only if Rsh is a discrete valuation ring.

C.2 Unibranched schemes

Intuitively a unibranched scheme is a scheme which when considered "very
locally" is irreducible. For instance the nodal cubic X given by the vanishing
of (y2 − x2 − x3) in A2

k (with k = k̄, char k 6= 2) is irreducible, however when
we consider the geometric picture we see that near the origin X looks like
two lines crossing, and hence "very locally" this should not be irreducible.
The aforementioned example of the nodal cubic will be a scheme which is not
unibranched.

Unibranched rings

Definition C.2.1 ([GD67, Chapter 0 (23.2.1)]). Let A be a local ring. We say
A is unibranched if the reduction Ared is a domain and if the integral closure A′

of Ared in its field of fractions is local. We say A is geometrically unibranched
if A is unibranched and moreover the residue field of A′ is purely inseparable1

over the residue field of A.

Remark C.2.2. Let A be a local ring. Here is an equivalent formulation

(1) A is unibranched if A has a unique minimal prime p and the integral
closure of A/p in its fraction field is a local ring, and

(2) A is geometrically unibranched if A has a unique minimal prime p and
the integral closure of A/p in its fraction field is a local ring whose residue
field is purely inseparable over the residue field of A.

1Note that by definition the trivial field extension is a purely inseparable extension.
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Example C.2.3. It follows from the definitions that a normal local ring is
geometrically unibranched.

Example C.2.4. Let X be the nodal cubic Spec k[x, y]/(y2 − x2 − x3). Let
x = (x, y) denote the origin. Then we claim that the local ring OX,x is not
unibranched. To see this consider first the ring map

k[x, y]→ k[t]

given by
x 7→ t2 − 1; y 7→ (t2 − 1)t = t3 − t.

We easily see that (y2 − x2 − x3) is the kernel of the aforementioned morphism.
Hence we have thatOX(X) ∼= k[t2−1, t3−t] = A and the ideal m = (t2−1, t3−t)
corresponds to the ideal (x, y) ∈ k[x, y]/(y2 − x2 − x3) under this isomorphism.
Thus we need to show that the integral closure of the local ring Am in its field of
fractions k(t) is not local. For this purpose note that the integral closure of A
in k(t) is nothing but k[t] and since integral closure commutes with localization
we have that the integral closure of Am is the ring S−1k[t] where S = A \ m.
Since

(t− 1)k[t] ∩A = (t2 − 1, t3 − t) = m = (t+ 1)k[t] ∩A

it follows that S−1k[t] is not local.

The notion of unibranchedness can also be understood in terms of Henseli-
sation:

Lemma C.2.5 ([GD67, Chapter IV Proposition 18.6.12]). Let A be a local
ring. Let Ah be the henselization of A. The following are equivalent

(1) A is unibranched, and

(2) Ah has a unique minimal prime.

Lemma C.2.6 ([GD67, Chapter IV Proposition 18.8.15]). Let A be a local
ring. Let Ash be a strict henselization of A. The following are equivalent

(1) A is geometrically unibranched, and

(2) Ash has a unique minimal prime.

Definition C.2.7 ([Stacks, Tag 0C26]). Let A be a local ring with henselization
Ah and strict henselization Ash. The number of branches of A is the number
of minimal primes of Ah if finite and ∞ otherwise. The number of geometric
branches of A is the number of minimal primes of Ash if finite and∞ otherwise.

Lemma C.2.8 ([Stacks, Tag 0C37]). Let (A,m, κ) be a local ring.

(1) If A has infinitely many minimal prime ideals, then the number of (geo-
metric) branches of A is ∞.
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(2) The number of branches of A is 1 if and only if A is unibranched.

(3) The number of geometric branches of A is 1 if and only if A is geometri-
cally unibranched.

Assume A has finitely many minimal primes and let A′ be the integral closure
of A in the total ring of fractions of Ared. Then

(4) the number of branches of A is the number of maximal ideals m′ of A′,

(5) to get the number of geometric branches of A we have to count each
maximal ideal m′ of A′ with multiplicity given by the separable degree of
κ(m′)/κ.

Branches of the completion.

It can be hard to compute integral closures and (strict) Henselizations. We now
describe how (geometrically) unibranchedness can to some extent be checked
by studying completions instead.

Lemma C.2.9 ([Stacks, Tag 0C28]). Let (A,m) be a Noetherian local ring.

(1) The map Ah → A∧ defines a surjective map from minimal primes of A∧

to minimal primes of Ah.

(2) The number of branches of A is at most the number of branches of A∧.

(3) The number of geometric branches of A is at most the number of geometric
branches of A∧.

For one dimensional local Noetherian rings the number of branches corre-
sponds to the number of minimal primes of the completion.

Lemma C.2.10 ([Stacks, Tag 0C2D]). Let (A,m) be a Noetherian local ring
of dimension 1. Then the number of (geometric) branches of A and A∧ is the
same.

Actually we have a smiliar result for excellent Noetherian local rings.

Lemma C.2.11 ([Stacks, Tag 0C2E], [Bed13, Thm 2.3]). Let (A,m) be a
Noetherian local ring. If the formal fibres of A are geometrically normal (for
example if A is excellent or quasi-excellent), then A is Nagata and the number
of (geometric) branches of A and A∧ is the same.

232

https://stacks.math.columbia.edu/tag/0C28
https://stacks.math.columbia.edu/tag/0C2D
https://stacks.math.columbia.edu/tag/0C2E


Unibranched schemes

We now provide the obvious scheme theoretic versions of the definitions and
results of the previous section.

Definition C.2.12 ([GD67, Chapter IV (6.15.1)]). Let X be a scheme. Let
x ∈ X. We say X is unibranched at x if the local ring OX,x is unibranched. We
say X is geometrically unibranched at x if the local ring OX,x is geometrically
unibranched. We say X is unibranched if X is unibranched at all of its points.
We say X is geometrically unibranched if X is geometrically unibranched at all
of its points.

Remark C.2.13. Note that being unibranched for a local ring A (Definition
C.2.1) is a condition on the ring A, while for a scheme it is a condition on
all of the stalks of the scheme. Hence it is possible that the local ring A is
unibranched, but the scheme Spec(A) is not unibranched as a scheme.

Lemma C.2.14. A scheme is unibranched (resp. geometrically unibranched)
if and only if SpecOhX,x (resp. SpecOshX,x)) is irreducible for every x ∈ X.

Proof. This follows from Lemma C.2.5 (resp. C.2.6).

Remark C.2.15. Lemma C.2.14 tells us that the definition of a (gemetrically)
unibranched scheme given here coincides with the one given in [SV00, Def.2.1.5].

Proposition C.2.16 ([SV00, Prop.2.1.6]). Let S be a Noetherian geometrically
unibranch scheme and f : S′ → S be a proper birational morphism. Then for
any point s of S the fiber S′s of f over s is geometrically connected.

Proof. It follows from [GD63, (4.3.5)] and [GD67, (18.8.15(c))].

The following theorem shows that all Normal schemes are necessarily geo-
metrically unibranched.

Theorem C.2.17. The following are equivalent:

(1) A scheme X is unibranched (resp. geometrically unibranched)

(2) The scheme Spec(OhX,x) (resp. Spec(OshX,x)) is irreducible for all points
x ∈ X where the local ring OX,x is not normal.

Proof. Using Lemma C.2.5 (resp. C.2.6) we get that (1) implies (2). The
converse follows from Lemma C.1.15.

Definition C.2.18 ([Stacks, Tag 0C38]). Let X be a scheme. Let x ∈ X.
The number of branches of X at x is the number of branches of the local ring
OX,x as defined in Definition C.2.7. The number of geometric branches of X
at x is the number of geometric branches of the local ring OX,x as defined in
Definition C.2.7.
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From Lemma C.2.8 we obtain the following result:

Lemma C.2.19. Let X be a scheme. Let x ∈ X.

(1) The number of branches of X at x is 1 if and only if X is unibranched at
x.

(2) The number of geometric branches of X at x is 1 if and only if X is
geometrically unibranched at x.

Lemma C.2.20. Suppose X is an integral locally Noetherian scheme of di-
mension one. Then X is (geometrically) unibranched if and only if ÔX,x is
for every x ∈ X. In particular we have that X is unibranched if and only if
Spec(ÔX,x) is irreducible.

Proof. The first assertion follows from Lemma C.2.10. The final assertion
follows from the first part together with C.2.5 and the fact that the henselization
of a Henselian ring is itself.

Similarly we have that

Lemma C.2.21. Suppose X is an excellent scheme. Then X is (geometrically)
unibranched if and only if ÔX,x is for every x ∈ X with OX,x not being a normal
ring. In particular we have that X is unibranched if and only if Spec(ÔX,x) is
irreducible.

Proof. This follows Theorem C.2.17 together with Lemma C.2.11 and reasoning
similar to that of the proof given of Lemma C.2.20.

Examples

We saw in Lemma C.2.21 that for excellent schemes such as for instance
algebraic schemes, we can check unibranchedness by checking if the scheme
Spec(ÔX,x) is irreducible at the non-normal points. The following lemma will
help us check the latter condition.

Lemma C.2.22. Let (A,m) be a local Noetherian ring, and a be an ideal of
A contained in the maximal ideal m. Then we have an isomorphism of m-adic
completions

Â/aÂ ∼= (̂A/a).

Proof. Since A is Noetherian we have an isomorphism

a⊗A Â→ â

hence the image of â in Â is the ideal aÂ. The result now follows from the
exact sequence

0→ â→ Â→ (̂A/a)→ 0.
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We will now prove again using different methods that the plane nodal cubic
curve is not unibranched in the case where the characteristic of the base field
is different from 2.

Example C.2.23. The plane nodal cubic curve X = V (y2 − x3 − x2) ⊂ A2
k is

not unibranched.

Proof. We only need to check the condition on the singular point which is the
origin. By Lemma C.2.21 we can prove that X is not unibranched by showing
that the ring ̂(k[x, y]/(y2 − x3 − x2))(x,y) has more than one minimal prime
ideal. Note that by Lemma C.2.22 we have an isomorphism

̂(k[x, y]/(y2 − x3 − x2))(x,y)
∼= k[[x, y]]/(y2 − x3 − x2).

We shall now construct two formal power series

g = y + x+
∞∑
i=2

gi

h = y − x+
∞∑
j=2

hj

where gi, hi are homogeneous of degree i and such that gh = y2−x3−x2. This
is done step by step. First note that (y + x)(y − x) = y2 − x2, next note that
since (y + x) and (y − x) generate the maximal ideal of k[[x, y]]2 we can find
polynomials g2, h2 such that

(y + x)h2 + (y − x)g2 = −x3.

Indeed we can take h2 = 1
2x

2 and g2 = −1
2 x

2. We have almost got what we
want except we need to get rid of a term g2h2, so again we can find polynomials
h3, g3 of degree 3 such that

(y + x)h3 + (y − x)g3 = −g2h2.

We now want to get rid of h3g2 + g3h2 and this can be done in a similar fashion,
and continuing in this way we get the formal power series g and h.

Now since g, h begin with linearly independent terms and all the other terms
are homogeneous of degree i for i = 2, . . . ,∞, it follows that g, h generate the
maximal ideal of k[[x, y]], thus we have an automorphism k[[x, y]]→ k[[x, y]]
given by x 7→ g, y 7→ h, hence we have

k[[x, y]]/(y2 − x2 − x3) ∼= k[[x, y]]/(gh) ∼= k[[x, y]]/(xy)

which clearly has at least two minimal prime ideals.

2Here we are using the assumption that char k 6= 2.
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Appendix D

Sheaves in Grothendieck
topologies

D.1 Grothendieck pretopologies

We recall the basic definitions and constructions following [Fan+05] and [Vis04].

Definition D.1.1. Let C be a category. A Grothendieck pretopology τ on C
is the assignment to each object U of C a collection of sets of arrows {Ui → U},
called coverings of U , so that the following conditions are satisfied.

(i) If V → U is an isomorphism, then the set {V → U} is a covering.

(ii) If {Ui → U} is a covering and V → U is any arrow, then the fibered
products {Ui×U V } exist, and the collection of projections {Ui×U V →
V } is a covering.

(iii) If {Ui → U} is a covering, and for each index i we have a covering
{Vi,j → Ui} (here j varies on a set depending on i), the collection of
composites {Vi,j → Ui → U} is a covering of U .

We denote the collection of coverings of an object U ∈ C by Cov(U). A category
with a Grothendieck pretopology is called a site and we denote it by the pair
(C, τ). For a Grothendieck pretopology τ on C we will also sometimes use
the notation Covτ (U) in place of Cov(U). This notation is convenient when
we need to talk about more than one Grothendieck pretopology on a given
category.

Definition D.1.2. Let (C, τ) be a site and suppose that {Ui → U}i∈I ∈
Cov(U). A refinement of {Ui → U}i∈I is a set of maps {Va → U}a∈A such
that for each index a ∈ A there is some index i ∈ I such that Va → U factors
through Ui → U .
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If τ1, τ2 are two Grothendieck pretopologies on a category C. Then we say
that τ1 is finer than τ2 (and τ2 is coarser than τ1) if any covering U ∈ Covτ2(U)
there is a refinement V = {Va → U}a∈A of U with V ∈ Covτ1(U).

D.2 Sheaves on a site

For a category C we denote the category of presheaves on C by Psh(C).
Let (C, τ) be a site, F ∈ Psh(C). Given a covering {pi : Ui → U}i∈I . Let

a : F(U)→
∏
i∈I F(Ui) be the unique map such that

F(pi) = pri ◦ a

where prj :
∏
i∈I F(Ui)→ F(Uj) is projection onto the j’th factor. Further for

each ordered pair of indices (i, j) let pr1,i,j : Ui×U Uj → Ui be the projection
to Ui and pr2,i,j : Ui×U Uj → Uj be the projection to Uj . Let b1, b2 be the
unique maps b1, b2

∏
iF(Ui)→

∏
i,j F(Ui×U Uj) such that

pr(i,j) ◦ b1 = F(pr1,i,j) ◦ pri ; (D.2.1)

pr(i,j) ◦ b2 = F(pr2,i,j) ◦ prj (D.2.2)

for each i, j where pr(i,j) is the projection onto the (i, j)’th factor

pr(i,j) :
∏
l,m

F(Ul×
U
Um)→ F(Ui×

U
Uj).

Definition D.2.1. A presheaf F : Cop → Sets is a separated presheaf if for
every covering {Ui → U}i∈I the map

F(U)
a→
∏
i∈I
F(Ui)

is injective. It is a sheaf if the following diagram

F(U)
∏
i∈I F(Ui)

∏
i,j F(Ui×U Uj)a b1

b2

is an equalizer. We denote the category of sheaves by Sh(C).

Since a category can have many different Grothendieck pretopologies it is
convenient to state which site we are considering when speaking of a sheaf.
Hence if τ is a Grothendieck pretopology on C we say that the presheaf F on
C is a τ -sheaf if it is a sheaf on the site (C, τ).

Definition D.2.2. ([Vis04, Def. 2.52]) A pretopology T on a category C is
called saturated if a set of arrows {Ui → U} which has a refinement that is in
T is also in T . If T is a pretopology on C, the saturation T of T is the set of
sets of arrows which have a refinement in T .
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Proposition 2.53 in [Vis04] tells us that the saturation of a pretopology is
saturated and that a presheaf is a sheaf with respect to T if and only if it is a
sheaf with respect to the saturation of T .

Definition D.2.3 ([Vis04, Def.2.57]). A pretopology τ on C is called subcanon-
ical if every representable functor on C is a sheaf with respect to τ .

Remark D.2.4. As mentioned in the second paragraph following [Vis04,
Def.2.57] the name "subcanonical" comes from the fact that on a category C
there is a topology, known as the canonical topology, which is the finest topology
in which every representable functor is a sheaf.

Sheafification

Definition D.2.5. Let (C, τ) be a site, and F ∈ Psh(C). A sheafification of F
is a sheaf Fτ ∈ Sh(C), together with a natural transformation F → Fτ , such
that

(i) given an object U of C and two elements ξ and η of F(U) whose images
ξa and ηa in Fτ (U) are the same, there exists a covering {σi : Ui → U}
such that σ∗i (ξ) := F(σi)(ξ) = σ∗i (η), and

(ii) for each object U of C and each ξ ∈ Fτ (U), there exists a covering
{σi : Ui → U} and elements ξi ∈ F(Ui) such that ξai = σ∗i ξ.

Theorem D.2.6. Let (C, τ) be a site, F ∈ Psh(C).

(i) If Fτ ∈ Sh(C) is a sheafification of F , any morphism from F to a sheaf
factors uniquely through Fτ .

(ii) There exists a morphism F → Fsτ where Fsτ is a separated presheaf, such
that any morphism from F to a separated presheaf factors uniquely through
Fsτ .

(iii) There exists a sheafification F → Fτ , which is unique up to a canonical
isomorphism.

(iv) The natural transformation F → Fτ is injective if and only if F is
separated.

Sketch of proof. Part (iv) follows easily from the definition. For (i) and (ii) and
(iii) we only provide the constructions. For (i): Let φ : F → G be a natural
transformation from F to a sheaf G ∈ Sh(C). Given an element ξ ∈ Fτ (U) we
want to define the image of ξ in G(U). There exists a covering {σi : Ui → U}
and elements ξi ∈ F(Ui), such that the image of ξi in Fτ (Ui) is σ∗i (ξ). Set
ηi = φ(Ui)(ξi) ∈ G(Ui). The pullbacks pr∗1ξi and pr∗2ξj in F(Ui×U Uj) both
have as their image in Fτ (Ui×U Uj) the pullback of ξ; hence there is a covering
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{Ui,j,α → Ui×U Uj}α such that ξi and ξj both pullback to the same element
in F(Ui,j,α) for every α. Using this together with the fact that G is separated
we get that ηi and ηj both pullback to the same element in G(Ui×U Uj) and
since G is a sheaf we get that the ηi glue to give an element η ∈ G(U). We now
let φτ : Fτ → G be given by φτ (U)(ξ) = η.

For (ii): For each object U of C, we define an equivalence relation ∼ on
F(U) as follows: Given two elements a and b of F(U), we write a ∼ b if there is
a covering {Ui → U}i∈I such that the pullbacks of a and b to each Ui coincide.
We define Fsτ (U) := F(U)/ ∼. If V → U is a morphism in C, then the pullback
F(U)→ F(V ) is compatible with the equivalence relations, yielding a pullback
Fsτ (U) → Fsτ (V ). This defines the functor Fsτ with the surjective morphism
F → Fsτ . For an element a ∈ F(U) we denote its image in Fsτ (U) by [a]
and since F → Fsτ is surjective we denote any element in Fsτ (U) in this way.
The presheaf Fsτ is separated, and every natural transformation from F to a
separated presheaf factors uniquely through Fsτ .

For (iii): To construct Fτ , we take for each object U of C the set of
pairs ({Ui → U}, {[ai]}), where {Ui → U} is a covering, and {[ai]} is a set
of elements with [ai] ∈ Fsτ (Ui), such that the pullback of [ai] and [aj ] to
Fsτ (Ui×U Uj), along the first and second projection coincide. On this set we
impose an equivalence relation, by declaring ({Ui → U}, {[ai]}) to be equivalent
to ({Vj → U}, {[bj ]}) when the restrictions of [ai] and [bj ] to F s(Ui×U Vj),
along the first and second projection respectively, coincide. For each U , we
denote by Fτ (U) the set of equivalence classes. If V → U is a morphism,
we define a function Fτ (U) → Fτ (V ) by associating with the class of a pair
({Ui → U}, {[ai]}) in Fτ (U) the class of the pair ({Ui×U V }, p∗i ([ai]), where
pi : Ui×U V → Ui is the projection. This gives a sheaf Fτ . There is also a
natural transformation Fsτ → Fτ , obtained by sending an element [a] ∈ Fsτ (U)
into ({U = U}, [a]) and the composition

F → Fsτ → Fτ

is the sheafification.

Remark D.2.7. Note that Fτ (U) = colimV Ȟ
0(V,Fsτ ) where V is a covering,

Ȟ0(V,Fsτ ) denotes the equalizer of the obvious diagram and the colimit is a
filtered colimit ordered by the relation "refinement".

Remark D.2.8. (Explicit computation of the induced morphism from the
sheafification). Suppose η : F → G is a morphism from the presheaf F to the
sheaf G. Let Fτ be the sheafification as constructed in the proof of Theorem
D.2.6 and let Sh(η) denote the induced map Sh(η) : Fτ → G. Then for any
element f = ({Ui → X}i∈I , fi ∈ Fsτ (Ui)) ∈ Fτ (X), where fi is the image of
fi ∈ F(Ui) in Fsτ (Ui) we have that Sh(η)(X)(f) is the "gluing of the elements"
η(Ui)(fi).
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Remark D.2.9. Suppose that φ : F → G is a morphism of presheaves. Then
the induced morphism

φτ : Fτ → Gτ
is given by

φτ (U)({pi : Ui → U}, {[ai]}) = ({pi : Ui → U}, {[φ(Ui)(ai)]})

Definition D.2.10. (Notation and assumptions as in Theorem D.2.6) We will
call the separated presheaf Fsτ constructed in the proof of Theorem D.2.6 the
separation of the presheaf F .

Definition D.2.11. Let (C, τ) be a site and let φ : F → G be a morphism of
presheaves on C.

1. The morphism φ is a τ -local monomorphism (or τ -locally a monomor-
phism) if for any U ∈ C and a, b ∈ F (U) such that φ(U)(a) = φ(U)(b) ∈
G(U) there exists a τ -covering {pi : Ui → U}i∈I such that p∗i (a) = p∗i (b)
for all i ∈ I.

2. The morphism φ is a τ -local epimorphism (or τ -locally an epimorphism)
if for any U ∈ C and b ∈ G(U) there exists a τ -covering {pi : Ui → U}i∈I
and elements ai ∈ F (Ui) such that

p∗i (b) = φ(Ui)(ai)

for all i.

3. The morphism φ is a τ -local isomorphism (or τ -locally an isomorphism)
if it is both a τ -local monomorphism and a τ -local epimorphism.

Lemma D.2.12. Let (C, τ) be a site and φ : F → G a morphism of presheaves
on C. Then the induced morphism (φ)τ : Fτ → Gτ is an isomorphism if and
only if φ is a τ -local isomorphism.

Definition D.2.13. Let (C, τ) be a site and F be a presheaf on C. We say
that F is representable with respect to the topology τ (or τ -representable) if
there exists an object X ∈ C such that the sheafification of F is isomorphic to
the sheafification of the representable presheaf hX .

D.3 Grothendieck topologies

The definitions of the previous section can be rephrased more concisely in
terms of Grothendiecks topologies. Every Grothendieck pretopology has an
associated Grothendieck topology and two different Grothendieck pretopologies
can give the same Grothendieck topology, but if this happens the sheaves with
respect to the two different pretopologies will coincide.
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This section is mostly written for the curious reader and is not really needed
to understand the contents of this thesis.

Most of the definitions stated here are taken directly from [MM94, Ch. III,
Sec.2].

Definition D.3.1. Let C be a category. For an object U ∈ C a sieve on U is
a subfunctor S ⊂ hU of the presheaf represented by U .

For an arrow f : V → U in C and a sieve S on U we have an induced sieve
on V denoted by f∗S given by the formula:

f∗S(W ) := {g ∈ hV (W ) : f ◦ g ∈ S(W )} (D.3.1)

which we call the restriction of S along f .

Definition D.3.2. A Grothendieck topology J on a category C is the data
consisting of a class J(U) of sieves on U for every object U in C subject to the
following conditions:

1. For every object U ∈ C we have hU ∈ J(U).

2. If S ∈ J(U) and f : V → U is any arrow in C then f∗S ∈ J(V ).

3. If S ∈ J(U) and R is any sieve on U such that f∗R ∈ J(V ) for all
f ∈ S(V ), then R ∈ J(C).

These three axioms are called the maximality, stability and transitivity axioms
respectively. If S ∈ J(U) we say that S is a covering sieve.

Definition D.3.3. Let C be a category with a Grothendieck pretopology τ .
For a covering U = {pi : Ui → U}i∈I of an object U ∈ C we let hU ⊂ hU be the
sieve on U defined by taking hU (T ) to be the set of morphisms f : T → U with
the property that for some i ∈ I there is a factorization f = (T → Ui

pi→ U).
The sieve hU is called the sieve associated with the covering U .

Proposition D.3.4. Let C be a category with a Grothendieck pretopology τ .
For every object U ∈ C let Jτ (U) be the class of sieves S on U with the property
that there is some covering U ∈ Cov(U) such that hU ⊂ S. Then the classes
Jτ (U) form a Grothendieck topology Jτ on C.

Proof. See [MM94, Ch. III, Sec.2, page 112].

Definition D.3.5. For a category C with a Grothendieck pretopology τ the
Grothendieck topology Jτ from Proposition D.3.4 is called the Grothendieck
topology associated to τ .

Definition D.3.6. Let C be a category with a Grothendieck topology J . A
presheaf F : Cop → Sets is a J-sheaf (or sheaf in the J-topology) if for any
object U ∈ C and covering sieve S ∈ J(U) the inclusion S ⊂ hU induces a
bijection

Hom(hU ,F)→ Hom(S,F). (D.3.2)
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Proposition D.3.7. Let C be a category with a Grothendieck pretopology τ
with associated Grothendieck topology Jτ and F : Cop → Sets a presheaf on C.
Then F is a sheaf with respect to τ (Definition D.2.1) if and only if F is a
Jτ -sheaf (Definition D.3.6).

Proof. See [Vis04, Prop.2.42].

D.4 Examples

Let us give some examples of Grothendieck pretopologies which are often
encountered in algebraic geometry.

Example D.4.1.

(A topological space) If X is a topological space, then letting CX be the category where objects
are the open subsets of X and the morphisms are given by inclusions.
Then setting Cov(U) to be the open coverings of the open subset U we
get a Grothendieck pretopology τX . This follows easily from the fact that
the fiber product of two open subsets is their intersection.

If X is a scheme considered as a topological space and F is a presheaf
on CX we say that F is a Zariski sheaf on X if F is a sheaf on the site
(CX , τX).

(The Zariski topology) For a scheme U taking Cov(U) to consist of exactly those sets of the form
{Ui

pi→ U}i∈I where pi are open embeddings and we have X = ∪i∈Ipi(Ui)
gives a Grothendieck pretopology on the category of schemes whose
associated Grothendieck topology is called the Zariski topology on the
category of schemes.

A sheaf in the Zariski topology is called a Zariski sheaf .

(The Étale topology) Taking coverings {Ui → U} to be jointly surjective families of étale
morphisms we get a pretopology whose associated Grothendieck topology
is called the étale topology on the category of schemes.

A sheaf in the étale topology is called an étale sheaf .

(The fppf topology) The fppf topology on the category of schemes is the Grothendieck topology
associated to the pretopology where coverings {Ui → U} is a jointly
surjective family of flat maps locally of finite presentation.
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Appendix E

Monoid objects

E.1 Monoid objects

Definition E.1.1. A commutative monoid object in a category C with products
and a terminal object ∗ is an object M in C and arrows

0 : ∗ →M

(the zero map)

+ : M ×M →M

(the addition map), such that the following diagrams commute:

M ×M M

M ×M M.

+

swap

+

(E.1.1)

(expressing commutativity of addition)

M ×M ×M M ×M

M ×M M.

M×+

+×M +

+

(E.1.2)

(yielding associativity of addition)
and

M ∗ ×M M ×M

M × ∗ M ×M M

∼=

∼=

0×M

+

M×0 +

(E.1.3)
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(informally telling us that the zero map picks out an element that is a left and
right identity).

Presheaves represented by monoid objects

Suppose that M together with the arrows 0 : ∗ → M , + : M ×M → M is
a monoid object in a category C with products and terminal object ∗. This
gives rise to a monoid object in the category of presheaves as follows: Let
+̃ : hM × hM → hM be the composition

hM × hM ∼= hM×M
h(+)→ hM (E.1.4)

where the first map is the natural isomorphism given by taking an element
of (hM × hM )(−) say f1, f2 : − →M to the unique morphism (f1, f2) : − →
M ×M such that fi = pri ◦ (f1, f2) for i = 1, 2. Further let 0̃ : h∗ → hM be
given by

0̃ = h(0). (E.1.5)

Then one checks straightforwardly that +̃ and 0̃ satisfy the conditions of the
addition and zero map respectively. Note that this implies that if T is any
object of C then if 0T ∈ hM (T ) is the image of 0̃(T ) we have that the triple

(hM (T ), +̃(T ), 0T ) (E.1.6)

is a commutative monoid. Furthermore since the maps +̃, 0̃ are natural trans-
formations the presheaf of sets hM can in fact be considered as a presheaf of
commutative monoids in this way.

Furthermore if t is any Grothendieck topology on C and we let Lt(M)
denote the sheafification of a representable functor hM , then we claim that
the sheaf Lt(M) of sets can in fact be considered as a sheaf of monoids in a
canonical way. Indeed since the canonical map hM × hM → Lt(M)× Lt(M) is
a sheafification of hM × hM , then letting +̂ : Lt(M)× Lt(M)→ Lt(M) be the
map induced from the composition of +̃ with the canonical sheafification map
hM → Lt(M) and setting 0̂ := Lt(0̃) : Lt(∗) → Lt(M), one proves the claim
almost immediately from the universal properties. In other words the sheaf
Lt(M) together with +̂ as addition and 0̂ as zero gives a monoid object in the
category of sheaves in the topology t and Lt(M) can be considered a presheaf
of commutative monoids. Note also that in this way the sheafification map
hM → Lt(M) is a morphism of presheaves of monoids.

Extension of scalars

Let Λ be any commutative semiring and C be a category with products and
terminal object. If M is a commutative monoid object in C we have seen
that then hM can be considered a presheaf of commutative monoids, and
moreover since −⊗N Λ is a functor we get induced a presheaf of Λ-semimodules
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hM ⊗N Λ : Cop → SemimodΛ. Similarly if t is any Grothendieck topology on C
we get a presheaf Lt(M)⊗N Λ on the category C of Λ-semimodules.

E.2 Constructing monoid objects in distributive
categories

Let us recall the notion of a distributive category.

Definition E.2.1. A category C with finite products and coproducts is called
(finitary) distributive if for any X,Y, Z ∈ C the canonical distributivity mor-
phism

X × Y
∐

X × Z → X × (Y
∐

Z) (E.2.1)

is an isomorphism. The canonical morphism is the unique morphism such
that X × Y → X × (Y

∐
Z) is X × i, where i : Y → Y

∐
Z is the coproduct

injection, and similarly for X × Z → X × (Y
∐
Z).

A category C with finite products and all small coproducts is infinitary
distributive if the statement applies to all small coproducts.

The following Lemma tells us that the category of S-schemes is an example
of an infinitary distributive category.

Lemma E.2.2. Suppose i ∈ I is an index set and let qi : Xi → S be a
morphism for each i ∈ I. Further let X → S be any morphism of schemes.
Then the pair

((pi,1)i∈I :
∐
i∈I

(X ×S Xi)→ X),
∐
i∈I

pi,2 :
∐
i∈I

(X ×S Xi)→
∐
i∈I

Xi) (E.2.2)

where for each i ∈ I the maps pi,1 : X ×S Xi → X, pi,2 : X ×S Xi → Xi is the
first and second projection respectively , is a pullback of the diagram

∐
i∈I X ×S Xi

∐
i∈I Xi

X S.

(pi,1)i∈I

∐
i∈I pi,2

(qi)i∈I
(E.2.3)

Proof. Suppose we are given morphisms of S-schemes f : T →
∐
Xi and

g : T → X. Then for each i ∈ I we get induced a morphism fi : f−1(Xi) →
X ×S Xi such that prX ◦ fi = g|f−1(Xi) and prXi ◦ fi = f |f−1(Xi) and so
we canonically get morphisms f ′i : f−1(Xi) →

∐
i∈I X ×S Xi. Since f ′i , f

′
j

coincide on f−1(Xi)∩ f−1(Xj) the f ′i glue to give a unique morphism f ′ : T →∐
i∈I X ×S Xi and it is clear from the construction that we have

∐
i∈I pi,2 ◦f ′ =

f and g = (pi,1)i∈I ◦ f ′.
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The Category of Sets, Presheaves (on a given category C) and sheaves in
a Grothendieck topology on a category C, are other examples of infinitary
distributive categories that appear in this thesis.

Construction E.2.3. Let C be an infinitary distributive category with finite
products and a terminal object ∗ ∈ C. Suppose that for each n ∈ N we have
an object Mn ∈ C with M0 = ∗ and that for each pair of indices m,n ∈ N we
have maps αm,n : Mm ×Mn →Mm+n such that for all non-negative integers
m,n, k the following diagrams commute:

1. :
Mm ×Mn Mm+n

Mn ×Mm Mm+n.

αm,n

swap

αn,m

(E.2.4)

2. :
Mk ×Mm ×Mn Mk ×Mm+n

Mk+m ×Mn Mm+n+k.

Mk×αm,n

αk,m×Mn αk,m+n

αk+m,n

(E.2.5)

3.

Mn M0 ×Mn Mn.∼= α0,n
(E.2.6)

Set M :=
∐
n∈NMn and let jn : Mn →M be the canonical map. Set 0 := j0 :

M0 = ∗ → M and note that since the category is infinitary distributive we
have M ×M ∼=

∐
m,n∈NMm ×Mn hence the maps αm,n induce a unique map

+ : M ×M →M making the following diagram commutative:

M ×M M

Mm ×Mn Mm+n.

+

jm×jn
αm,n

jm+n (E.2.7)

Then it is not hard to show that M together with the maps 0 and + form a
commutative monoid object in C. Indeed commutativity and associativity of
addition follows almost immediately from Item 1 and Item 2 respectively. To
check commutativity of the diagram given in Equation (E.1.3) is satisfied note
that the composition Mn → ∗×M

0×M→ M ×M factors as Mn → ∗×Mn
j0×jn→

M ×M and similarly Mn →M ×∗ M×0→ M ×M factors through jn× j0. From
Item 1 and Item 3 the claim now follows.
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Definition E.2.4. Let C be an infinitary distributive category with finite
products and a terminal object ∗ ∈ C. Then a graded commutative monoid
object in C is any object constructed by means of Construction E.2.3.
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Nomenclature

(L1 · · ·Lm · F ) intersection number, page 164

(X,G)/S pair satisfying the conditions of Lemma 3.3.1, page 116

(X/S)d self fibered product over a base, page 34

(x0, x1)∗(Z) cycle associated with a cycle and a fat point, page 53

(x0, x1)∗(Z/S) cycle associated with a fat point and a closed sub-
scheme, page 53

(x0, x1, R) fat point, page 49

[K : k]insep inseparable degree, page 15

[K : k]sep separable degree, page 15

AutS(X) group of S-automorphisms , page 20

AG subsheaf of G-invariants of the sheaf of algebras A,
page 28

Fsτ separation of the presheaf F , page 239

χ(X,F) Euler characteristic, page 164

CH(X, r) Chow group of algebraic cycles, page 90

Cirrr,d((X, i)/S) geometrically irreducible hypersurfaces contained in
the Chow scheme, page 186

Cr,d((X, i)/S) Chow scheme, page 189

Cr,d((X, i)/S) underlying set of the Chow scheme, page 185

Cr((X, i)/S) Chow monoid, page 195

cycl(f) pullback of relative cycles along f , page 69

Cycl(X) group of cycles on a scheme, page 38
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Cycl(X/S, r) group of relative cycles, page 54

Cycl(X/S, r)Q presheaf of relative cycles, page 75

Cycl(X/S, r)UI presheaf of relative cycles with universally integral
coefficients, page 76

Cycleff (X/S, r) monoid of effective relative cycles, page 54

Cycleff (X/S, r)Q+ presheaf of effective relative cycles, page 75

CycleffD (PIS/S, r)UI relative cycles of multi-degree D, page 168

cyclX homomorphism from closed subschemes to cycles on
a scheme, page 39

Cyclequi(X/S, r) group of equidimensional relative cycles, page 54

Cyclequi(X/S, r)UI presheaf of equidimensional relative cycles with uni-
versally integral coefficients, page 76

Cycleff
d ((X, i)/S, r)

UI
relative cycles of degree d with respect to a closed
embedding, page 182

Cycleff (X) monoid of effective cycles on a scheme, page 39

Cyclequi(X/S, r)Q presheaf of equidimensional relative cycles, page 75

Z ess
= W essentially the same cycles, page 92

degs(Z) multi-degree of Zs, page 167

δX/S diagonal morphism, page 19

∆X/S diagonal morphism, page 19

dim(X/S) local fiber dimension function, page 2

dimx(X) dimension of a topological space at a point, page 1

EffS(Z) effective locus of a relative cycle, page 96

η fixed natural transformation in Chapter 4, page 122

Exp.Char(S) exponential characteristics of a scheme, page 113

exp. char(k(s)) exponential characteristic of a field, page 113

c1(L) first Chern class in terms of K0, page 164

ιk(b) formal tensor conjugate, page 33
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K(X) Grothendieck group of X, page 164

Hilb(X/S, r) closed subschemes flat and equidimensional over the
base, page 60

Hirr
d,n presheaf of geometrically irreducible equidegree hy-

persurfaces, page 177

Hd,n presheaf of equidegree hypersurfaces, page 177

Hr,n graded commutative monoid via equidegree hypersur-
faces, page 177

lengthA(M) length of the A-module M , page 213

limf→s(Z/S) cycle-theoretic fiber, page 91

Mη(A) η-construction for a ring, page 123

N(Hilb(X/S, r) free monoid of closed subschemes flat and equidimen-
sional over the base, page 60

N(PropHilb(X/S, r)) free monoid of closed subschemes flat, proper and
equidimensional over the base , page 60

Nt(X/S) sheafification of N(X/S), page 201

Nη(A) product of residue fields with respect to F , page 122

NullS(Z) vanishing locus of a relative cycle, page 97

νp p-adic valuation on Q, page 159

(−)Perf natural transformation from identity to perfect clo-
sure, page 18

kPerf perfect closure, page 18

π∗OGX subsheaf of G-invariants, page 23

PIS multi projective space, page 165

PropCycl(X/S, r) group of proper relative cycles, page 54

PropCycl(X/S, r)Q presheaf of proper relative cycles, page 75

PropCycl(X/S, r)UI presheaf of proper relative cycles with universally
integral coefficients, page 76

PropCycleff (X/S, r) monoid of effective proper relative cycles, page 54
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PropCycleff (X/S, r)Q+ presheaf of effective proper relative cycles, page 75

PropCyclequi(X/S, r) group of proper equidimensional relative cycles, page 54

PropCyclequi(X/S, r)UI presheaf of proper equidimensional relative cycles with
universally integral coefficients, page 76

PropCyclequi(X/S, r)Q presheaf of proper equidimensional relative cycles,
page 75

PropHilb(X/S, r) closed subschemes flat, proper and equidimensional
over the base, page 60

Psh(C) category of presheaves on C, page 238

ψX/S graph of the pair (X,G)/S, page 21

(K)pi purely inseparable closure, page 15

Rat(X, r) subgroup of cycles rationally equivalent to zero, page 90

iB/A projection from Section 4.1, page 129

(B/A)η relative η-construction for rings, page 129

(Z/X)η relative η-construction for schemes, page 141

Mη(Z/X) defining sheaf for the scheme theoretic relative η-
construction, page 141

qB/A induced map A→ (B/A)η, page 129

uB/A projection from Section 4.1, page 129

Hirr
d,n scheme representing Hirr

d,n, page 177

Hd,n scheme representing Hd,n, page 177

Lprop(X/S) sheafification of representable in the proper topology,
page 191

Sh(C) category of sheaves on C, page 238

Lt sheafification of a representable presheaf, page 153

Fprop sheafification in the proper topology, page 191

Σd group of permutations, page 32

µηX map associated to the scheme theoretic η-construction,
page 137
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Nη(X) sheaf of products of residue fields with respect to F ,
page 135

StabG(a) stabilizer of the element a, page 23

ρk(b) elementary symmetric tensor, page 33

qX algebra structure on Mη(X), page 136

tX algebra structure on Nη(X), page 135

supp(Z) support of a cycle, page 39

Symd(X/S) d’th symmetric power over the base S, page 35

Sn(M/A) symmetric tensors, page 32

Sym•(X/S) monoid of symmetric powers of a scheme over a base,
page 38

(M/A)⊗n n-fold tensor product, page 32

qA natural map from Section 4.1, page 123

tA natural map from Section 4.1, page 122

g induced morphism to the scheme-theoretic relative
η-construction, page 141

Xd universal degree d hypersurface in ((Pn)∨)r+1, page 184

υY,X/S morphism of Corollary 3.3.6, page 118

Z(Hilb(X/S, r)) free group of closed subschemes flat and equidimen-
sional over the base, page 60

Z(PropHilb(X/S, r)) free group of closed subschemes flat, proper and equidi-
mensional over the base, page 60

Z(H) attempted Chow inverse, page 183
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BG ring of G-invariants, page 22

Ch(Z) integral subscheme p(f−1(Z)) ⊂ G/S., page 181

Chow(i) Chow homomorphism restricted to relative cycles on
a closed subscheme, page 183

Chowd(i) degree d Chow homomorphism restricted to relative
cycles on a closed subscheme, page 183
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F fixed endofunctor in Chapter 4, page 122

f∗(Z) push-forward of the cycle Z along f , page 82

GX object associated to the pair (X,G), page 20

hU sieve associated with the covering U , page 242

Ksep separable closure, page 15

N(X/S) presheaf of abelian monoids freely generated by hX ,
page 201

p∗(Z) flat pullback of a cycle, page 39

p∗(Z) proper pushforward of a cycle, page 42

Q(A) total ring of fractions, page 11

Rh Henselization of the local ring R, page 227

Rsh strict Henselization of the local ring R, page 227

Vη fixed subcategory of valuation rings from Section 4.1,
page 123

X/G quotient by a group, page 21

XZ blowup of X with center in Z, page 102

Chow homomorphism taking relative cycles of dimension r
in projective space to codimension one relative cycles
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Attempted Chow inverse, 183

Chain of submodules, 213
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Dimension
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Essentially the same cycles, 92
Exponential characteristic of a field,

15

Fat point, 49
Finitary distributive category, 247
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Graph of the pair (X,G)/S, 21
Grothendieck pretopology, 237
Grothendieck topology, 242

associated to a pretopology, 242
Group action, 20
Group quotient, 21

Henselian ring, 225
Henselization of a ring, 227

Infinitary distributive category, 247
Inseparable degree of a field exten-

sion, 15

263



Intersection number, 164
Inverse system, 45

Length
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Localization
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of a semi-module, 218

Monoid, 217
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of relative cycles, 167
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of an algebraic cycle, 166
Multi-index, 165
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semi-ring, 218
Multiplicity
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Nagata
ring, 46
scheme, 46

Number of branches of a ring, 231
Number of branches of a scheme,

233
Number of geometric branches of a

ring, 231
Number of geometric branches of a

scheme, 233

Object associated to the pair of a
group and an object, 20

Orbits of a group acting on an affine
scheme, 24
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Proper transform, 7
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Pushforward of cycle, 82
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Rationally equivalent, 90
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54

proper, 54
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241
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sd-h topology, 110
Semi-module, 218
Semi-module homomorphism, 218
Semi-ring, 217
Seminormal, ix
Seminormalization, ix
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relative to a morphism, viii
Separable

algebraic field extension, 13
closure of a field extension, 15
degree of a finite field extension,

15
field extension, 13
lifting condition, 110

Separably generated field extension,
13

Separated presheaf
in a Grothendieck pretopology,

238
Separation of a presheaf, 241
Sheaf

in a Grothendieck pretopology,
238

in a Grothendieck topology, 242
Sheafification, 239
Sieve, 242

associated with a covering, 242
Site, 237
Strict Henselization of a ring, 227
Strict transform, 7
Strictly Henselian ring, 225
Submersive morphism, 100
Symmetric powers of a scheme, 35
Symmetric tensor, 32

elementary, 33
System, 45

Topological epimorphism, 100
Total ring of fractions, 11

Unibranch scheme, 233
Unibranched ring, 230
Unit

in a semi-module, 218
in a semi-ring, 218

Universal homeomorphism, 18
Universal topological epimorphism,

100
Universally equidimensional morphism

, 3

Universally injective morphism, 18
Universally integral coefficients, 76
Universally submersive morphism,

100

Valuation ring, 8

Weak normalization, ix
relative to a morphism, viii

Weakly normal, ix
Well defined familiy of algebraic cy-

cles, 92

Zariski sheaf, 243
on a scheme, 243

Zariski topology, 243
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